UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

ADA200994

REPORT DOCUMENTATION PAGE														
13. REPORT SECURITY CLASSIFICATION UNCLASSIFIED					16. RESTRICTIVE MARKINGS									
2a. SECURITY CLASSIFICATION AUTHORITY					3 . DISTRIBUTION/AVAILABILITY OF REPORT									
2b. DECLASSIF	ICATION / DOW	/NGRADIN	G SCHEDUI	Ē	Approved for public release; distribution is unlimited.									
4. PERFORMIN	G ORGANIZAT	ION REPO	RT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NU	IMBER(S)						
NSWC TR														
6a. NAME OF	•			6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION									
	rface Wea	·		Code R14										
6c. ADDRESS (10901 Ne Silver S	City, State, and w Hampshi pring, MD) nue 903-5000	0	7b. ADDRESS (Cit	ty, State, and ZIP C	ode)							
8a. NAME OF ORGANIZA	FUNDING/SPO TION	NSORING		8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT IDE	NTIFICATI	ION NUME	BER					
8c. ADDRESS (City, State, and	ZIP Code)			10. SOURCE OF	FUNDING NUMBERS	5							
					PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.		VORK UNIT CCESSION NO.					
11. TITLE (Incl			السيبة السائديات		62633N	F33327	SF33	327	R19BA					
12. PERSONAL Minos Mo	AUTHOR(S)			sis of Ring-Sti										
13a. TYPE OF			b. TIME CO	OVERED TO	14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 250									
16. SUPPLEME	NTARY NOTAT	rion							i					
17	COSATI	CODES		18. SUBJECT TERMS (Continue on revers	e if necessary and	identify I	by block r	number)					
FIELD	GROUP	SUB-G	ROUP											
13	13	 					•							
This report treats the case of a long ring-stiffened circular cylindrical shell made of rigid-perfectly plastic material. The approximate Tresca square is used as yield surface with the corresponding associated flow rule. The shell is subjected to an external axisymmetric dynamic overpressure of rectangular form. Maximum permanent deformations are obtained.														
	TION / AVAILAB	_		IOT DESCRIPTION		CURITY CLASSIFICA	TION							
	F RESPONSIBLE			PT. DTIC USERS	UNCLASSIFIED 22b YELEPHONE (Include Area Code) 22c. OFFICE SYMBOL									
Minos Mou					(202)394-1681 Code R14									

i#PL___

FOREWORD

This report presents the first phase of an ongoing program to establish the permanent deflections attained by a circular cylindrical ring-stiffened shell, when subjected to dynamic overpressure.

The study employs the ideas developed by Professor P. G. Hodge 30 years ago. It will serve as a starting platform for more complicated analysis in the near future.

This work was sponsored by the Office of Naval Technology through the Naval Surface Warfare Center's Block Program, "Explosives and Undersea Warheads" (D. E. Phillips).

Approved by:

K. F. MUELLER, Head

Energetic Materials Division

CONTENTS

Section	Page
INTRODUCTION	1
PROBLEM STATEMENT AND SOLUTION METHOD	4
RESULTS AND DISCUSSION	7
REFERENCES	47
NOMENCLATURE	51
APPENDIX A - PRELIMINARY ANALYSIS	A-1
APPENDIX B - CASE A - SHORT SHELLS, LOW LOADING	B-1
APPENDIX C - CASE B - LONG SHELLS, LOW LOADING	C-1
APPENDIX D - CASE C - SHORT SHELLS, HIGH LOADING	D-1
APPENDIX E - CASE D - LONG SHELLS, HIGH LOADING	E-1

	•
sion For	
GRA&I TAB ounced fication	DTIC GOPY INSPECTA
ibution/	
lability Codes	
Avail and/or Special	
	ibution/ lability Codes [Avail and/or

ILLUSTRATIONS

Figure		Page
1	RING-STIFFENED CIRCULAR CYLINDRICAL SHELL (FRAME SPRING L_{T})	10
2	CROSS-SECTION OF FIGURE 1	10
3	RECTANGULAR PRESSURE DISTRIBUTION ACTING OVER TIME to	11
4	STRESS-STRAIN CURVE FOR RIGID, PERFECTLY PLASTIC MATERIAL	11
A-1	CIRCULAR CYLINDRICAL SHELL OF LENGTH 2L, DIAMETER 2a, SKIN THICKNESS h = 2H	A-19
A-2	CYLINDRICAL SHELL SUBJECTED TO RADIALLY INWARD PRESSURE P	A-20
A-3	SIMPLIFIED TRESCA YIELD SQUARE ABCD	A-21
B-1	VELOCITY PROFILES FOR SHORT SHELLS ($c^2 < 6$), LOW LOADING $\left(1 + \frac{2}{c^2} \le p \le 1 + \frac{6}{c^2}\right) \dots \dots \dots \dots \dots \dots$	B-20
C-1	VELOCITY PROFILES FOR LONG SHELLS ($c^2 > 6$) AND LOW LOADING $\left(1 + \frac{2}{c^2} \le p \le 1 + \frac{6}{c^2}\right)$	C-20
D-1	VELOCITY PROFILES FOR TIME τ SHORT SHELLS, HIGH LOADING	D-40
E-1	VELOCITY PROFILE FOR LONG SHELLS AND HIGH PRESSURES FOR IN $0 \le \tau \le 1$	E-50
E-2	ASSUMED VELOCITY PROFILE FOR LONG SHELLS AND HIGH LOADS FOR $1 \le \tau \le \tau_0$	E-51
E-3	VELOCITY PROFILE FOR LONG SHELLS AND HIGH PRESSURES $\left(p \neq \frac{3}{2}\right)$ FOR $1 \leq \tau \leq \tau_1 \ldots \ldots \ldots$	E-52

TABLES

<u>Table</u>		Page
1	SUMMARY, SHORT SHELLS, LOW LOADING, 1	12
2	SUMMARY, SHORT SHELLS, LOW LOADING, 2	13
3	SUMMARY, LONG SHELLS, LOW LOADING, 1	14
4	SUMMARY, LONG SHELLS, LOW LOADING, 2	15
5	SUMMARY, LONG SHELLS, LOW LOADING, 3	16
6	SUMMARY, SHORT SHELLS, HIGH LOADING, 1	17
7	SUMMARY, SHORT SHELLS, HIGH LOADING, 2	18
8	SUMMARY, SHORT SHELLS, HIGH LOADING, 3	19
9	SUMMARY, SHORT SHELLS, HIGH LOADING, 4	20
10	SUMMARY, SHORT SHELLS, HIGH LOADING, 5	21
11	$E_1(x)$ FOR $0 \le x \le u_0 \cdot \cdot$	22
12	$E_1(x)$ FOR $u_0 \le x \le 1$	23
13	SUMMARY, LONG SHELLS, HIGH LOADING, 1	24
14	SUMMARY, LONG SHELLS, HIGH LOADING, 2	25
15	SUMMARY, LONG SHELLS, HIGH LOADING, 3	26
16	SUMMARY, LONG SHELLS, HIGH LOADING, 4	27
17	SUMMARY, LONG SHELLS, HIGH LOADING, 5	30
18	SUMMARY, LONG SHELLS, HIGH LOADING, 6	32
19	SUMMARY, LONG SHELLS, HIGH LOADING, 7	33
20	GEOMETRICAL AND MATERIAL CHARACTERISTICS OF MODEL	35

TABLES (Cont.)

Table		Page
21	RESULTS FOR MODEL NO. 1 (SHORT SHELLS, LOW LOADING CASE) (P = 600 psi)	37
22	RESULTS FOR MODEL NO. 2 (LONG SHELLS, HIGH LOADING CASE) (P = 600 psi)	38
23	RESULTS FOR MODEL NO. 3 (LONG SHELLS, HIGH LOADING CASE) (P = 525 psi)	40
24	RESULTS FOR MODEL NO. 4 (LONG SHELLS, HIGH LOADING CASE) (P = 1200 psi)	42
25	RESULTS FOR MODEL NO. 5 (LONG SHELLS, LOW LOADING CASE) (P = 987 psi)	44
A-1	REGIONS ON SIMPLIFIED TRESCA SQUARE (YIELD LOCUS)	A-22
B-1	SUMMARY, SHORT SHELLS, LOW LOADING, 1	B-21
B-2	SUMMARY, SHORT SHELLS, LOW LOADING, 2	B-22
C-1	SUMMARY, LONG SHELLS, LOW LOADING, 1	C-21
C-2	SUMMARY OF THE OBTAINED CONSTANTS	C-22
C-3	FUNCTIONS AND THEIR DERIVATIVES	C-23
C-4	SUMMARY, LONG SHELLS, LOW LOADING, 2	C-24
C-5	SUMMARY, LONG SHELLS, LOW LOADING, 3	C-25
D-1	SUMMARY, SHORT SHELLS, HIGH LOADING, 1	D-41
D-2	SUMMARY, SHORT SHELLS, HIGH LOADING, 2	D-42
D-3	USEFUL FUNCTIONS AND THEIR DERIVATIVES	D-43
D-4	SUMMARY, SHORT SHELLS, HIGH LOADING, 3	D-44
D5	SUMMARY, SHORT SHELLS, HIGH LOADING, 4	D-45
D-6	SUMMARY, SHORT SHELLS, HIGH LOADING, 5	D-46
D-7	$E_1(x)$ FOR $0 \le x \le u_0$	D-47
D-8	$E_1(x)$ FOR $u_0 \le x \le 1$	D-48
E-1	SUMMARY, LONG SHELLS, HIGH LOADING, 1	E-53
E-2	SUMMARY, LONG SHELLS, HIGH LOADING, 2	E-54

TABLES (Cont.)

Table																					Page
E-3	SUMMARY,	LONG	SHELLS,	HIGH	LOADING,	3	•	•	•	•	•		•	•	•	•		•	•	•	E-55
E-4	SUMMARY,	LONG	SHELLS,	HIGH	LOADING,	4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-56
E-5	SUMMARY,	LONG	SHELLS,	HIGH	LOADING,	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-59
E-6	SUMMARY,	LONG	SHELLS,	HIGH	LOADING,	6	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E-61
E-7	SUMMARY,	LONG	SHELLS,	HIGH	LOADING,	7		•					•								E-62

INTRODUCTION

This report is the first step towards an ongoing effort to obtain a closed form or a relatively simple numerical solution to the problem of a ring-stiff-ened, circular cylindrical shell subjected to a dynamic pressure load. Maximum permanent deflections after load removal are obtained.

The analytical solution of the dynamic problem, even under substantial simplifying assumptions, can be very complex and cumbersome. In this report, we rederive and extend the analytical solutions obtained by Hodge. Considerable simplification can be achieved if we are content with numerical treatment of the governing equations on the computer.

This study employs the assumptions listed below.

V44

- 1. (Geometrical and Boundary Conditions Assumptions) Rotational and axial symmetries are assumed. For ring-stiffened shells only a typical half-frame ${\rm spacing}\,(L_T/2) \ {\rm is} \ {\rm considered}. \ \ ({\rm This} \ {\rm assumption} \ {\rm implies} \ {\rm a} \ {\rm relatively} \ {\rm long} \ {\rm shell},$ away from supports which may affect behavior.)
- 2. (Loading Assumptions) The dynamic loading is axisymmetric in the form of a step function applied as a pressure over a finite length of time and then removed (i.e., of rectangular type). The duration of the load is very short. Axial compression is not accounted for.

- 3. (Initial Conditions Assumptions) The structure starts from rest with zero initial velocity and displacements.
- 4. (Material Assumptions) Material is rigid perfectly plastic. The elastic strain energy is much smaller than the energy dissipated through plastic deformation. The simplest form of the Tresca yield surface is employed, and no residual strains are considered. No strain rate effects are included.
- 5. (Geometrical Nonlinearity Assumptions) There is no geometrical nonlinearity. Small deformations, strains, and rotations are considered. Transverse shear deformation is neglected. The employed strain-displacement equations are linear, and the equilibrium equations are based on the undeformed configuration.

The method is not new; it was first used by P. Hodge, Jr. 1,2 30 years ago. What is new is that we have been able to rework most of its details, point out any differences with Hodge's results, and build the foundations on which more complicated analyses, such as by Jones (Reference 3) and Duszek (Reference 4), can be completed. Work similar to Hodge's original work 1,2 was also presented by Kuzin and Shapiro, 5 and Sankaranarayanan 6 and Hodge. 7 Unlike the work by Hodge 8 and Sankaranarayanan, 9 in which the static collapse load was established under rigid plastic conditions, the work by Klement 10 was an elastoplastic treatment of the static collapse load, while References 1 through 7 were concerned with the dynamic case. Onat, 11 Duszek, 4, 12 and Lance 13 present analyses of load-displacement predictions for post-yield behavior under static loads, accounting for changes in geometry. These analyses were based on moderately large displacement theory and assumed rigid perfectly plastic material. Furthermore, Reference 13 presented a bounding principle for finite deflections and static loadings, and compared it with a solution by the "rate

formulation," first proposed by Onat (Reference 11). Finally, in all fairness, the work by Lintholm and Bessey must be mentioned, where clamped and axially restrained beams were loaded impulsively, and it was concluded that the rigid perfectly plastic model was inadequate due to the strong influence of elastic effects.

This report is organized in the following way. After a brief introduction there is a section of problem statement with its proposed solution technique. The actual analysis pertaining to the obtained equations shows up in Appendices A (preliminary analysis) through E. The analytical results of this analysis are summarized in Tables 1 through 19 for the convenience of the reader. This is followed by a section on results for five cylindrical shells and a brief discussion of these computations. There is a Nomenclature section defining the terms used and a relevant list of references.

PROBLEM STATEMENT AND SOLUTION METHOD

Consider a ring-stiffened, circular cylindrical shell (Figure 1) with constant frame spacing (L_T). The shell has multiple frame spaces. However, only a typical spacing will be analyzed. The body as well as the externally applied dynamic loading are assumed fully axisymmetric (Figure 2). The loading is a constant overpressure of magnitude P and form P = P(t) acting over a time interval $0 \le t \le t_0$ (Figure 3). The time t_0 is relatively short.

The material is assumed "rigid-perfectly plastic," [(Figure 4) References 15 through 21]. Therefore there are no deformations up to a critical stress. When the critical stress, pressure, or load is reached, however, there will be unrestricted plastic flow. In actuality, strains and deformations will not increase without bounds because buckling or fracture of the material will instead take place. In the dynamic case accelerated motion will be resisted by the inertia of the body. The rigid-perfectly plastic assumption is reasonable, where elastic deformations are very small compared to plastic ones.

To solve the problem, it is required that we employ some of the ideas from plasticity theory. 7,15,24,25 Therefore, we briefly mention that, when a metal goes beyond its yield point, the point representing the state of stress in stress space lies on a surface. Typically, we have the Von Mises ellipse, the Tresca hexagon, and the simplification of the Tresca hexagon, or the Tresca square. Through a change of variables, the stress space can be written in terms of moment and force resultants. When more plastic flow occurs, the direction

in which this happens is given by the flow rule. The corresponding strain rate vector (in strain space) is such that it is normal to the yield surface and is directed outwards. The employed yield surface (References 7, 15, and 19) is the simplified "approximate" Tresca square. The associated flow rule and normality conditions (References 7, 15, and 19) are also used. The equations of equilibrium (References 1, 2, 7, and 22) are obtained in the undeformed configuration. The strain-displacement expressions (Reference 22) used employ only linear terms. Therefore, the theory is infinitesimal and the analysis is simplified considerably.

The boundary, initial, and jump conditions (Reference 23) are discussed in the actual solution.

The method of solution is as follows:

- 1. Assume a "kinematically admissible" velocity profile. That is a velocity (or displacement) distribution that satisfies velocity (or displacement) constraints; to ensure material stability the total external work by the loads on these displacements is positive.*
- 2. Assume the portion of the yield surface on which we are on. We employ "an associated flow rule." The "outwards" normality condition of the strain rate vector (written in terms of displacement rates) on the yield surface leads to certain conditions being satisfied. These make the mechanism of instantaneous motion admissible.
- 3. Satisfy initial, boundary, and "jump" conditions (References 7, 23, 27, and 28). These last conditions are at "hinge circles" for shells. (In the case of beams we have just hinges.)
 - 4. Satisfy the equations of equilibrium in the undeformed state.

^{*}Drucker's postulate on material stability. 15

5. Verify that the obtained stress profiles (moment and force distributions) do not violate the yield surface at any point. If they do, then another "kinematically admissible" velocity profile must be assumed, and steps 1 through 4 repeated.

The maximum "residual" deflections are not bounds* of any kind. They can, however, provide useful information on damage (deflections, not strains) by dynamic overpressures and, therefore, serve as a guide for the estimation of deformations.

^{*}See upper and lower bound theorems¹⁵ for static analysis. Because our problem is dynamic, estimates of this kind do not produce bounds.

RESULTS AND DISCUSSION

We summarize our analytical results in Tables 1 through 19. All non-dimensional quantities that appear in all the Tables (1 through 25) are defined in the Nomenclature as well as the Appendices. Tables 1 through 19 have been organized with respect to two non-dimensional parameters. The first one is a pressure parameter, controlling whether the loading is low or high. The second one is a non-dimensional parameter c^2 that combines shell radius (a), shell thickness (h) and half frame spacing (L). The loading is termed "low" if $1+\frac{2}{c^2} \leq p \leq 1+\frac{6}{c^2}$ and "high" if $p>1+\frac{6}{c^2}$.

The distinction of whether a shell is termed as either short or long depends on whether the non-dimensional constant $c^2 = \frac{L^2}{2ah} = \frac{2L^2}{ah}$ is less or greater than 6. Tables 1 and 2 pertain to short shells and low loading, tables 3 through 5 to long shells and low loading. Tables 6 through 12 to short shells and high loading, and Tables 13 through 19 to long shells and high loading.

This method was applied to five cases of ring-stiffened shells, not necessarily representative of marine structures. Table 20 gives the geometrical and material characteristics of these models. Model No. 1 was subjected to an overpressure of 600 psi. This model was analyzed by using the results of the case of short shells and low loading. The applied overpressure exceeded the critical overpressure (524.569 psi). Therefore, plastic flow took place. Table 21 gives

results for this situation. The final permanent deformations are small in comparison to the shell thickness. At a non-dimensional half length of 1.0 (i.e., at middle between two stiffeners) residual displacement is only 0.645×10^{-2} inches. Table 21 also gives the time for the shell to come to rest.

Table 22 gives results for Model No. 2. In this case, the length between stiffeners was increased from 3.543 to 10.630 in. The analysis falls in the long shells, high loading case, since c² (= 28.2546) exceeds 6. In this case, the applied overpressure (600 psi) also was in excess of the critical value (343.089 psi). The residual displacements are an order of magnitude larger than for Model No. 1. In this case, the deflection profile is shown both as a function of non-dimensional time (vertically down) and as a function of distance from the left support (middle point is represented by 1.000). Table 23 displays the results of Model No. 3, identical to Model No. 2, but with lower applied overpressure, P = 525 psi. The residual displacements are smaller than for Model No. 2.

Table 24 gives results for Model No. 4, which differs in geometry from Models 1, 2 and 3. Table 24 shows that although the applied overpressure (1200 psi) is not much larger than the critical overpressure (986.432 psi), this method of analysis can lead to unrealistic displacement. This is due to the omission of the geometrically nonlinear terms in the strain-displacement relations [see Appendix A, Equations (A-12) through (A-15)] and because the equilibrium equation [Equation (A-1) of Appendix A] was not obtained in the deformed state.

Table 25 gives results for Model No. 5. In this case, the overpressure was reduced to 987.0 psi and its period of duration increased from 0.10×10^{-2} sec. to 0.1×10^{-1} sec. (with respect to Model No. 4). We observe that although the exerted overpressure (987.0 psi) is slightly larger than the critical value

(986.432 psi), the permanent deformations obtained are larger than 1 diameter, and there is no need to compute deformations to the middle of the shell. The same table also gives the position and the velocity of the hinge circle as a function of non-dimensional time. Furthermore, we observe that all models come to rest, as is demonstrated by the velocity of the final point in time. (See Tables 21 through 25.)

In conclusion, this study has shown that it is possible to obtain useful expressions for permanent deformations. However, we must extend the method to, at least, include the effect of end load [n term in Equation (A-30) which will result in a three-dimensional Tresca cube for the approximate yield surface], and account for geometric nonlinearities in the strain-displacement relations to be able to obtain useful expressions of residual deformations. Unlike finite element methods, this technique can provide very useful estimates of residual deformations with minimal computational effort, provided a proper analysis has been developed.

FIGURE 1. RING-STIFFENED CIRCULAR CYLINDRICAL SHELL (FRAME SPRING L $_{\rm T}$)

NOTE: THIS FIGURE DISPLAYS AN AXISYMMETRIC STRUCTURE AND LOADING IN THE FORM OF INWARD PRESSURE P(t)

FIGURE 2. CROSS-SECTION OF FIGURE 1

FIGURE 3. RECTANGULAR PRESSURE DISTRIBUTION ACTING OVER TIME \mathbf{t}_{o}

FIGURE 4. STRESS-STRAIN CURVE FOR RIGID, PERFECTLY PLASTIC MATERIAL

TABLE 1. SUMMARY, SHORT SHELLS, LOW LOADING, 1

	SHELL TYPE	PRESSURE LOADING TYPE				
ТҮРЕ	SHORT (0 < C ² < 6)	$LOW\left(1+\frac{2}{c^2}\leqslant p\leqslant 1+\frac{6}{c^2}\right)$				
CONDITIONS		0 ≤ τ ≤ 1				
MOMENT RESULTANT	$m_{\chi}(x,\tau) = \left[\frac{C^2}{2}(p-1)\right]$	$-1 \int x^3 - C^2 (p-1)x^2 + \left[\frac{C^2}{2} (p-1) + 3 \right] x - 1$				
MEMBRANE RESULTANT		$n_{\varphi} = -1$				
DISPLACEMENT	w (x, t	$0 = \frac{3}{2C^2} \left[\frac{C^2}{2} (p-1) - 1 \right] \times \tau^2$				
VELOCITY	ŵ (x, 1	$r = \frac{3}{2C^2} \left[C^2 (p-1) - 2 \right] x \tau$				
ACCELERATION	ŵ (x,	$(r) = \frac{3}{2c^2} \left[c^2(p-1) - 2 \right] x$				
TIME TO		N/A				
DISPLACEMENT AT REST	HAS NOT COME TO REST VET					

TABLE 2. SUMMARY, SHORT SHELLS, LOW LOADING, 2

	SHELL TYPE	PRESSURE LOADING TYPE					
ТҮРЕ	SHORT $\left(0 < c^2 \leqslant 6\right)$	$LOW\left(1+\frac{2}{c^2}\leqslant p\leqslant 1+\frac{6}{c^2}\right)$					
CONDITIONS		$1 \leqslant \tau \leqslant \frac{p}{p_{o}}$					
MOMENT RESULTANT	$m_{x}(x,\tau) = -\left[\frac{c^{2}}{2} + 1\right]x^{3} + c^{2}x^{2} + \left[3 - \frac{c^{2}}{2}\right]x - 1$						
MEMBRANE RESULTANT		n _φ = -1					
DISPLACEMENT	$w\left(x,\tau\right)=\left[\begin{array}{cc} \\ \end{array}\right.$	$-\frac{3}{2C^{2}}\left(\frac{C^{2}}{2}+1\right)\tau^{2}+\frac{3}{2}p\tau^{2}-\frac{3}{4}p\right]x$					
VELOCITY	$\dot{\mathbf{w}}(\mathbf{x},\tau) = \left[-\frac{3}{\mathbf{c}^2} \left(\frac{\mathbf{c}^2}{2} + 1 \right) \tau + \frac{3}{2} \mathbf{p} \right] \mathbf{x}$						
ACCELERATION	w ($x, \tau) = -\frac{3}{c^2} \left(\frac{C^2}{2} + 1\right) x$					
TIME TO		$r_0 = \frac{p}{p_0} = \frac{c^2}{\left(c^2 + 2\right)} p$					
DISPLACEMENT AT REST	$w(x,\tau_0) = \frac{p}{\left(1 + \frac{p}{1 + \frac{p}}1 + \frac{p}{1 + \frac{p}{1 + \frac{p}{1 + \frac{p}{1 + \frac{p}{1 + \frac{p}{1 + \frac{p}}1 + \frac{p}{1 + \frac{p}}1 + \frac{p}1+ \frac{p}{1 + \frac{p}1+ \frac{p}1$	$\frac{1}{\left(\frac{2}{c^2}\right)^2} \left[\frac{3}{2} \left(\frac{1}{2} + \frac{1}{c^2} \right) p - \frac{3}{4} \left(1 + \frac{2}{c^2} \right)^2 \right]$					

TABLE 3. SUMMARY, LONG SHELLS, LOW LOADING, 1

	SHELL TYPE	PRESSURE LOADING TYPE						
TYPE	LONG $(c^2 > 6)$	$LOW\left(1+\frac{2}{c^2}\leqslant p\leqslant 1+\frac{6}{c^2}\right)$						
CONDITIONS		0 ≤ τ ≤ 1						
MOMENT RESULTANT	$m_{\chi}(x,\tau) = \left[\frac{C^2}{2}(p-1)\right]$	$m_{\chi}(x,\tau) = \left[\frac{C^2}{2}(p-1)-1\right]x^3 - C^2(p-1)x^2 + \left[\frac{C^2}{2}(p-1)+3\right]x-1$						
MEMBRANE RESULTANT		n_{arphi} =1						
DISPLACEMENT	. w (x,:	$ \tau\rangle = \frac{3}{2C^2} \left[\frac{C^2}{2} (p-1) - 1 \right]_X \tau^2$						
VELOCITY	ŵ (x,	$\tau) = \frac{3}{2C^2} \left[C^2 \left(\rho - 1 \right) - 2 \right] x \tau$						
ACCELERATION	w (x,	$\tau) = \frac{3}{2C^2} \left[C^2 \left(p - 1 \right) - 2 \right] x$						
TIME _{TO}		N/A						
DISPLACEMENT AT REST	HAS	HAS NOT COME TO REST YET						

TABLE 4. SUMMARY, LONG SHELLS, LOW LOADING, 2

	SHELL TYPE	PRESSURE LOADING TYPE
TYPE	LONG (C ² > 6)	$LOW \left(1 + \frac{2}{c^2} \le p \le 1 + \frac{6}{c^2}\right)$
CONDITIONS	$0 \leq x < u u = \alpha(\tau - 1) \alpha$ $\dot{u} = \alpha$	$= \frac{(C^2 - 6)}{3\left[\frac{C^2}{2}(p - 1) - 1\right]}, 1 \le \tau \le \tau_0 \qquad (u \le 1 - \sqrt{\frac{6}{C}})$
MOMENT RESULTANT		m _X = -1
MEMBRANE RESULTANT		n _{\varphi} = 0
DISPLACEMENT	w	$= \frac{3}{2c^2} \left[\frac{c^2}{2} (p-1) - 1 \right] \times$
VEĽOCITY		₩ = 0
ACCELERATION		₩ = 0
TIME ₇ o		$\tau_0 = 1 + \frac{1}{\alpha} \left(1 - \frac{\sqrt{6}}{C} \right)$
DISPLACEMENT AT REST	$w(x, \tau_0) = \frac{3}{2C^2} \left[\frac{C^2}{2} \right]$	$(p-1)-1$ x FOR $0 \le x < \alpha \ (\tau_0-1)$

TABLE 5. SUMMARY, LONG SHELLS, LOW LOADING, 3

	SHELL TYPE	PRESSURE LOADING TYPE					
ТҮРЕ	LONG $(c^2 > 6)$	$LOW \left(1 + \frac{2}{C^2} \leqslant p \leqslant 1 + \frac{6}{C^2}\right)$					
CONDITIONS	$\alpha = \frac{(c^2 - 6)^2}{3[\frac{c^2}{2}(p - 1)]^2}$	$\begin{array}{ll} \underbrace{)}_{,} & 1 \leqslant \tau \leqslant \tau_{o} & u \leqslant \tau \leqslant 1 \\ -1 \end{aligned}$ $\begin{array}{ll} u \leqslant 1 - \frac{\sqrt{6}}{C} \end{array}$					
MOMENT RESULTANT	$m_{x}(x,\tau) = 1 + \frac{1}{(1-u)^{3}} \left[-4x^{3} + 6(1+u)x^{2} - 12ux - 2(1-3u) \right]$ where $u = \alpha(\tau - 1)$						
MEMBRANE RESULTANT		n _φ = _ 1					
DISPLACEMENT	$w(x,\tau) = \frac{3}{2C^{2}} \left[\frac{C^{2}}{2} (p-1) - 1 \right] x + \frac{6}{C^{2}} \left(\frac{1}{\alpha} \right) \frac{C^{2}}{6} \left[(x+\alpha)(\tau-1) - \frac{\alpha}{2} (\tau^{2}-1) \right] $ $\left[\frac{1}{\alpha} log_{e} 1 - \alpha(\tau-1) + \frac{(1-x)}{\alpha} \cdot \frac{\alpha(\tau-1)}{(1+\alpha-\alpha\tau)} \right] $						
VELOCITY	$\dot{\mathbf{w}}(\mathbf{x},\tau) = \frac{6}{C^2} \left(\frac{1}{\alpha}\right) \left[\frac{C^2}{6} - \frac{1}{(1-u)^2}\right] (\mathbf{x} - \mathbf{u})$						
ACCELERATION	w(x, τ) =	$\left(\frac{6}{c^2}\right) \frac{\left[1+\alpha(\tau-1)-2\times\right]}{\left[1+\alpha-\alpha\tau\right]^3}-1$					
TIME _T O	τ _o = 1+	$\frac{\left[\frac{C^2}{2}(p-1)-1\right]}{C(C+\sqrt{6})}=1+\frac{1}{\alpha}\left(1-\frac{\sqrt{6}}{C}\right)$					
DISPLACEMENT AT REST	20 -	$\frac{1}{\alpha^2} \left\{ (x + \alpha) \left(1 - \frac{\sqrt{6}}{C} \right) - \frac{1}{2} \left[\left\{ (1 - \frac{\sqrt{6}}{C} + \alpha)^2 - \alpha^2 \right] \right\}$ $\left[\frac{1}{2} \log_e C \right] + (1 - x) \left(\frac{\sqrt{6}}{C} - \frac{6}{C^2} \right) \right\}$					

TABLE 6. SUMMARY, SHORT SHELLS, HIGH LOADING, 1

	SHELL TYPE	PRESSURE LOADING TYPE	
ТҮРЕ	SHORT (c ² < 6)	HIGH LOAD $\left(p > 1 + \frac{6}{c^2}\right)$	
CONDITIONS	$u_0^2 = \frac{6}{c^2(p-1)}$	0 ≤ τ ≤ 1	
MOMENT RESULTANT	$m_{\chi}(x,\tau) = 2\left[\frac{x}{u_0} - 1\right]$	$\left \frac{1}{3} + 1 \right _{OR} = 2 \left[\frac{x}{u_0} \right]^3 - 6 \left[\frac{x}{u_0} \right]^2 + 6 \left[\frac{x}{u_0} \right] - 1$	
MEMBRANE RESULTANT		n _φ = −1	
DISPLACEMENT	. wt	$w(x,\tau) = \frac{1}{2} \frac{(p-1)}{u_0} \tau^2 x$	
VELOCITY	$\dot{\mathbf{w}} = \frac{(\mathbf{p} - 1)}{\mathbf{u_0}} \tau \mathbf{x}$		
ACCELERATION		₩ = (p - 1) x	
TIME _{TO}		N/A	
DISPLACEMENT AT REST	HAS	NOT COME TO REST YET	

TABLE 7. SUMMARY, SHORT SHELLS, HIGH LOADING, 2

ТҮРЕ	SHELL TYPE	PRESSURE LOADING TYPE
	SHORT (C2 < 6)	HIGH LOAD $\left(p > 1 + \frac{6}{c^2}\right)$
CONDITIONS	$u_0^2 = \frac{6}{c^2(p-1)}$	0 ≤ τ ≤ 1 u _o < x ≤ 1
MOMENT RESULTANT		m _x = 1
MEMBRANE RESULTANT		n _φ = −1
DISPLACEMENT		$w = \frac{1}{2} \left(p - 1 \right) \tau^2$
VELOCITY	$\dot{\mathbf{w}} = (\mathbf{p} - 1) \tau$	
ACCELERATION	₩ = p-1	
TIME TO		N/A
DISPLACEMENT AT REST	HAS	S NOT COME TO REST YET

TABLE 8. SUMMARY, SHORT SHELLS, HIGH LOADING, 3

	011511 7705	PDCCCUPE LOADING TVDC
TYPE	SHELL TYPE	PRESSURE LOADING TYPE
IVE	SHORT $\left(c^2 < 6\right)$	HIGH LOAD $\left(p > 1 + \frac{6}{c^2}\right)$ $p > \tau$
CONDITIONS	$u^2 = \frac{6\tau}{C^2(p-\tau)}$	$0 \le x < u$ $1 \le \tau \le \tau'$ $\tau' = \frac{p}{1 + \frac{6}{C^2}} = \frac{p}{p_1}$
MOMENT RESULTANT	$m_{x}(x,\tau) = -\frac{1}{2}(2+C^{2})$	$(2u^2)\left(\frac{x}{u}\right)^3 + C^2u^2\left(\frac{x}{u}\right)^2 + \left(3 - \frac{C^2u^2}{2}\right)\left(\frac{x}{u}\right) - 1$
MEMBRANE RESULTANT		n _{\varphi} = -1
DISPLACEMENT	$w(x,\tau) = \frac{1}{2}(p-1)\left(\frac{x}{u_0}\right) + x\left[\frac{C}{2\sqrt{p-1}}\right] + \frac{\sqrt{6}}{8}Cp^2\left\{\tan^{-1}\left(\sqrt{p-1}\right)\right\} + \frac{\sqrt{6}}{8}Cp^2\left\{\tan^{-1}\left(\sqrt{p-1}\right)\right\} + \frac{\sqrt{6}}{8}Cp^2\left\{\tan^{-1}\left(\sqrt{p-1}\right)\right\} + \frac{\sqrt{6}}{8}Cp^2\left\{\tan^{-1}\left(\sqrt{p-1}\right)\right\} + \frac{\sqrt{6}}{8}Cp^2\left\{\tan^{-1}\left(\sqrt{p-1}\right)\right\} + \frac{\sqrt{6}}{8}Cp^2\left(\frac{\sqrt{p-1}}{6}\right) + \frac{\sqrt{6}}{8}Cp^2\left(p$	$\frac{6}{c^{2}(p-1)}$ $\frac{7}{6} \left\{ \sqrt{\tau} (p-\tau)^{3/2} - (p-1)^{3/2} \right\} + \frac{3C}{4\sqrt{6}} p \left\{ \sqrt{\tau(p-\tau)} - \frac{\tau}{6} - \tau \right\} - \tan^{-1} \left(\sqrt{\frac{1}{p-1}} \right) \right\} \text{FOR } 0 \leq x \leq u_{0}$ $\frac{p}{6} \frac{C^{4}x^{4}}{(6+C^{2}x^{2})^{2}} + \frac{\sqrt{6}}{8} C p^{2} x \left[\tan^{-1} \left(\frac{Cu}{\sqrt{6}} \right) - \tan^{-1} \left(\frac{Cx}{\sqrt{6}} \right) \right]$ $\frac{C^{2}x}{C^{2}x^{2})^{2}} + \frac{3C^{2}u}{4(6+C^{2}u^{2})} - \frac{3C^{2}x}{4(6+C^{2}x^{2})} \right] \text{FOR } u_{0} \leq x \leq u$
VELOCITY	ŵ(τ) = (p	$-\tau \left(\frac{x}{u}\right) = \frac{C}{\sqrt{6}} \frac{(p-\tau)^{3/2}}{\sqrt{\tau}} x$
ACCELERATION	$\ddot{\mathbf{w}}(\tau) = -\frac{\mathbf{x}}{\mathbf{u}}$	$\frac{1}{u}\left[1+\frac{(p-\tau)\dot{u}}{u}\right]=\frac{1}{2}\left(\frac{x}{u}\right)\left[2+\frac{p}{\tau}\right]$
TIME _T o	AT TIME $\tau' = \frac{p}{p_1}$, TRAVEL	ING HINGE u MOVES TO MIDLENGTH x = u = 1
DISPLACEMENT AT REST	HAS	NOT COME TO REST YET

TABLE 9. SUMMARY, SHORT SHELLS, HIGH LOADING, 4

	SHELL TYPE	PRESSURE LOADING TYPE
TYPE	SHORT C ² < 6	HIGH LOAD $p > 1 + \frac{6}{c^2}$
CONDITIONS	$u^2 = \frac{6\tau}{c^2 \left(\rho - \tau\right)}$	$u < x \le 1$ $p > \tau$ $1 \le \tau \le \tau'$ $\tau' = \frac{p}{\left(1 + \frac{6}{C^2}\right)} = \frac{p}{p}$
MOMENT RESULTANT		m _x = -1
MEMBRANE RESULTANT		n _{\varphi} = -1
DISPLACEMENT	w ($(\tau) = \frac{1}{2} \left[2p \tau - \tau^2 - p \right]$
VELOCITY		ŵ(τ) = p - τ
ACCELERATION		₩ (τ) = −1
TIME ₇	AT TIME $\tau' = \frac{P}{P_1}$, TRAVELING THIS REGIME SHRINKS TO ZEF	G HINGE u MOVES TO MIDLENGTH x = u = 1 AND
DISPLACEMENT AT REST	HAS	NOT COME TO REST YET

TABLE 10. SUMMARY, SHORT SHELLS, HIGH LOADING, 5

	SHELL TYPE	PRESSURE LOADING TYPE
ТҮРЕ	short c ² < 6	HIGH LOAD $p > 1 + \frac{6}{C^2}$
CONDITIONS	$p > \tau$ $\tau' \leq \tau \leq \tau_0$ $\tau' = \frac{c^2}{c^2 + 6}p$	
MOMENT RESULTANT	$m_{\chi} = -\left[1 + \frac{c^2}{2}\right]x^3 + c^2x^2 + \left[3 - \frac{c^2}{2}\right]x - 1$	
MEMBRANE RESULTANT		n _y = 1
DISPLACEMENT	WHERE FOR 0	$ \times \left[\rho \tau - \frac{1}{2} \frac{(C^2 + 2)}{C^2} \tau^2 \right] + E_1 (x) $ $ \le x \le u_0 E_1 \text{ is given in Table 11} $ $ < x \le 1 E_1 \text{ is given in Table 12} $
VELOCITY	$\dot{w} = \left(\frac{3}{2}\right) \times \left[p - \frac{\left(c^2 + 2\right)}{c^2}\tau\right]$	
ACCELERATION	$\ddot{w} = -\frac{3}{2} \times \left[\frac{C^2 + 2}{C^2} \right]$	
TIME _{To}	$\tau_0 = \left[\frac{c^2}{c^2 + 2}\right] p$	
DISPLACEMENT AT REST	$w(\tau_0) = \frac{3}{4} \left(\frac{c^2}{c^2 + 2}\right) p^2 x + E_1(x)$	WHERE E ₁ WILL BE CALCULATED EITHER T = T ₀ BY TABLE 11 OR TABLE 12

TABLE 11. $E_1(x)$ FOR $0 \le x \le u_0$

$$E_{1}(x) = \frac{1}{2}(p-1) \frac{x}{u_{0}} - \frac{3}{4} \times p^{2} \frac{(c^{2}+0)c^{2}}{(c^{2}+6)^{2}} + x \left[\frac{3c^{2}}{(c^{2}+6)^{2}} p^{2} - \frac{c}{2\sqrt{6}}(p-1)^{3/2} + \frac{3c^{2}p^{2}}{4(c^{2}+6)} - \frac{3c}{4\sqrt{6}} p\sqrt{p-1} + \frac{\sqrt{6}}{8} c p^{2} \left\{ ten^{-1} \left(\frac{c}{\sqrt{6}} \right) - ten^{-1} \left(\sqrt{\frac{1}{p-1}} \right) \right\} \right]$$

TABLE 12. $E_1(x)$ FOR $u_0 \le x \le 1$

$$\begin{split} E_1 &(x) = -\frac{3}{4} x p^2 \frac{\left(c^2 + p\right) c^2}{\left(c^2 + 6\right)^2} - \frac{p}{2} \left[1 - 2p \frac{c^2 x^2}{\left(6 + c^2 x^2\right)} + p \frac{c^4 x^4}{\left(6 + c^2 x^2\right)^2} \right] \\ &+ \frac{\sqrt{6}}{8} c p^2 x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{c x}{\sqrt{6}} \right) \right\} + x p^2 \left\{ \frac{3c^2}{\left(6 + c^2\right)^2} - \frac{3c^2 x}{\left(6 + c^2 x^2\right)^2} \right. \\ &+ \frac{3c^2}{4(6 + c^2)} - \frac{3c^2 x}{4(6 + c^2 x^2)} \right\} \end{split}$$

TABLE 13. SUMMARY, LONG SHELLS, HIGH LOADING, 1

ТҮРЕ	SHELL TYPE	AB PRESSURE LOADING TYPE
	LONG C ² > 6	HIGH LOAD p > 1 + $\frac{6}{C^2}$
CONDITIONS	$u_0^2 = \frac{6}{C^2(p-1)}$	0 ≤ τ ≤ 1 0 ≤ x ≤ u ₀
MOMENT RESULTANT	$m_{x}(x,\tau) = 2\left(\frac{x}{u_{o}} - 1\right)^{3} + 1$ $= 2\left(\frac{x}{u_{o}}\right)^{3} - 6\left(\frac{x}{u_{o}}\right)^{3}$	or $\frac{x}{u_0}^2 + 6\left(\frac{x}{u_0}\right) - 1$ POINTS ALONG AB ON
MEMBRANE RESULTANT		$n_{\varphi} = -1$ $TRESCA SQUARE$
DISPLACEMENT	· · · · · · · · · · · · · · · · · · ·	$y(\mathbf{x},\tau) = \frac{1}{2} \frac{(\mathbf{p}-1)}{\mathbf{u}_0} \tau^2 \mathbf{x}$
VELOCITY		$\dot{\mathbf{w}} = \frac{(\mathbf{p} - 1)}{\mathbf{u_o}} \mathbf{\tau} \mathbf{x}$
ACCELERATION		$\ddot{\mathbf{w}} = \frac{(\mathbf{p} - 1)}{\mathbf{u_0}} \mathbf{x}$
TIME ₇₀		N/A
DISPLACEMENT AT REST	HAS	NOT COME TO REST YET

TABLE 14. SUMMARY, LONG SHELLS, HIGH LOADING, 2

TYPE	SHELL TYPE	PRESSURE LOADING TYPE
	LONG C ² > 6	HIGH LOAD $p > 1 + \frac{6}{C^2}$
CONDITIONS	$u_0^2 = \frac{6}{C^2(p-1)}$	0 ≤ τ ≤ 1 u ₀ < x ≤ 1
MOMENT RESULTANT		m _x = 1 POINT B ON
MEMBRANE RESULTANT		n _φ = -1
DISPLACEMENT		$w = \frac{1}{2} (p-1) \tau^2$
VELOCITY		.w = (p–1) τ
ACCELERATION		ẅ = p−1
TIME ₇₀		N/A
DISPLACEMENT AT REST	HAS NOT COME TO REST YET	

TABLE 15. SUMMARY, LONG SHELLS, HIGH LOADING, 3

	SHELL TYPE	AB PRESSURE LOADING TYPE
TYPE	LONG C ² > 6	HIGH p > 1 + $\frac{6}{C^2}$ (p $\neq \frac{3}{2}$)
	o ≤ x ≤ y	1 ≤ τ ≤ τ₁
CONDITIONS	$u_o = \sqrt{\frac{6}{C^2(p-1)}}$	$\tau_1 = p - \sqrt{\frac{(p-1)^3}{(2p-3)}} \left\{ 2 - \frac{C^2}{6} \Theta_1^2 \right\}$
	$\Theta_{f 1}$ defined i	n TABLE 16, ATTACHMENT 1
MOMENT RESULTANT		m _x ≈ −1
MEMBRANE RESULTANT		$^{\mathbf{n}}arphi=0$
DISPLACEMENT		$w = \frac{1}{2} \frac{(p-1)}{u_0} x$
VELOCITY		₩ = 0
ACCELERATION		₩ = 0
TIME _{TO}		N/A
DISPLACEMENT AT REST	HAS N	IOT COME TO REST YET

TABLE 16. SUMMARY, LONG SHELLS, HIGH LOADING, 4

	SHELL TYPE	AB PRESSURE LOADING TYPE
TYPE	LONG C ² >6	HIGH LOAD $p > 1 + \frac{6}{C^2} (p \neq \frac{3}{2})$
CONDITIONS	$\tau_1 = p - \sqrt{\frac{(p-1)^3}{(2p-3)}} \left\{ 2 - \frac{C^2}{6} \Theta \right\}$	'
MOMENT RESULTANT	$m_{x}(x,\tau) = \frac{1}{(u-y)^{3}} \left[-4x^{3} + 6 (u+t) - (y+u)(y^{2} - 4yu + u^{2}) \right]$	$\frac{2\sqrt{3}}{C} < \theta_1 < 1$, if $p < \frac{3}{2}$
MEMBRANE RESULTANT		$n_{\varphi}=-1$
DISPLACEMENT	SEE ATTACHMENT 2.	
VELOCITY	$\dot{\mathbf{w}} = (\mathbf{p} - \tau) \frac{(\mathbf{x} - \mathbf{y})}{\Theta}$	
ACCELERATION	$\ddot{\mathbf{w}} = \left(\frac{6}{C^2}\right) \frac{1}{(\mathbf{u} - \mathbf{y}^3)} \left[\mathbf{u} + \mathbf{y} - 2\mathbf{x}\right] - 1$	
TIME _{TO}	N/A	
DISPLACEMENT AT REST	HAS NOT COME TO REST YET	

TABLE 16. ATTACHMENT 1

$$\Theta_1 = \frac{2\sqrt{3}}{C} \left[\frac{\coth\left(\frac{C(1-u_0)}{\sqrt{3}}\right) + \frac{2\sqrt{3}}{Cu_0}}{\left[1 + \frac{2\sqrt{3}}{Cu_0} \coth\left(\frac{C(1-u_0)}{\sqrt{3}}\right)\right]} \right] \qquad u = u_0 + \frac{2\sqrt{3}}{C} \log_e \left[\frac{\left(\Theta + \frac{2\sqrt{3}}{C}\right) \left(u_0 - \frac{2\sqrt{3}}{C}\right)}{\left(\Theta - \frac{2\sqrt{3}}{C}\right) \left(u_0 + \frac{2\sqrt{3}}{C}\right)} \right]$$

$$y = u_0 - \Theta + \frac{\sqrt{3}}{2C} \log_e \left[\frac{\left(\Theta + \frac{2\sqrt{3}}{C}\right) \left(u_0 - \frac{2\sqrt{3}}{C}\right)}{\left(\Theta - \frac{2\sqrt{3}}{C}\right) \left(u_0 + \frac{2\sqrt{3}}{C}\right)} \right]$$

TABLE 16. ATTACHMENT 2

$$\begin{split} w(x,\tau) &= \frac{1}{2} \frac{(p-1)^3}{(2p-3)} \left[(x-u_0)!(\theta-u_0) + \frac{1}{2} (\theta^2 - u_0^2) - \frac{\sqrt{3}}{2C} (\theta-u_0) \log_e \left| \frac{\left(u_0 - \frac{2\sqrt{3}}{C}\right)}{\left(u_0 + \frac{2\sqrt{3}}{C}\right)} \right| - \\ &- \frac{\sqrt{3}}{2C} \left\{ \left(\theta + \frac{2\sqrt{3}}{C}\right) \log_e \left| \left(\theta + \frac{2\sqrt{3}}{C}\right) \right| - \left(u_0 + \frac{2\sqrt{3}}{C}\right) \log_e \left| \left(u_0 + \frac{2\sqrt{3}}{C}\right) \right| - \\ &- \left(\theta - \frac{2\sqrt{3}}{C}\right) \log_e \left| \left(\theta - \frac{2\sqrt{3}}{C}\right) \right| + \left(u_0 - \frac{2\sqrt{3}}{C}\right) \log_e \left| \left(u_0 - \frac{2\sqrt{3}}{C}\right) \right| \right\} \\ &u_0 < x \leqslant u \\ &w(x,\tau) = \frac{1}{2} (p-1) + \\ &+ \frac{C^2}{6} \frac{(p-1)^3}{(2p-3)} \left[(x-u_0)!(\theta-u_0) + \frac{1}{2} (\theta^2 - u_0^2) - \frac{\sqrt{3}}{2C} (\theta-u_0) \log_e \left| \frac{\left(u_0 - \frac{2\sqrt{3}}{C}\right)}{\left(u_0 + \frac{2\sqrt{3}}{C}\right)} \right| - \\ &- \frac{\sqrt{3}}{2C} \left\{ \left(\theta + \frac{2\sqrt{3}}{C}\right) \log_e \left| \left(\theta + \frac{2\sqrt{3}}{C}\right) \right| - \left(u_0 + \frac{2\sqrt{3}}{C}\right) \log_e \left| \left(u_0 + \frac{2\sqrt{3}}{C}\right) \right| - \\ &- \left(\theta - \frac{2\sqrt{3}}{C}\right) \log_e \left| \left(\theta - \frac{2\sqrt{3}}{C}\right) \right| + \left(u_0 - \frac{2\sqrt{3}}{C}\right) \log_e \left| \left(u_0 - \frac{2\sqrt{3}}{C}\right) \right| \right\} \end{split}$$

TABLE 17. SUMMARY, LONG SHELLS, HIGH LOADING, 5

	SHELL TYPE	AB PRESSURE LOADING TYPE
TYPE	LONG C ² >6	HIGH $p > 1 + \frac{6}{C^2} \left(p \neq \frac{3}{2} \right)$
CONDITIONS		u ≼ x ≤ 1
MOMENT RESULTANT		m _x = 1
MEMBRANE RESULTANT		$n_{\varphi} = -1$
DISPLACEMENT	SEI	E ATTACHMENT 1.
VELOCITY		• p-τ
ACCELERATION		~ =−1
TIME ₇₀		N/A
DISPLACEMENT AT REST	HAS NO	OT COME TO REST YET

TABLE 17. ATTACHMENT 1

$$\begin{split} u < x \leqslant 1 &\quad u = u^* \text{ at } \tau = \tau^*, \;\; \Theta = \Theta^* \\ w(x,\tau) = & \frac{1}{2} \;\; (p-1) + \; p \; [\tau - \tau^*] - \frac{1}{2} \;\; [\tau^2 - \tau^{*2}] + \\ &\quad + \frac{C^2}{6} \;\; \frac{(p-1)^3}{(2p-3)} \left[\left(u^* - u_0 \right) \;\; (\Theta^* - u_0) + \frac{1}{2} \;\; (\Theta^{*2} - u_0^2) \right. \\ &\quad - \left. \frac{\sqrt{3}}{2C} \;\; (\Theta^* - u_0) \;\; log_e \;\; \left| \left(\frac{u_0 - \frac{2\sqrt{3}}{C}}{\left(u_0 + \frac{2\sqrt{3}}{C} \right)} \right| - \right. \\ &\quad - \left. \frac{\sqrt{3}}{2C} \;\; \left\{ \left(\Theta^* + \frac{2\sqrt{3}}{C} \right) \;\; log_e \;\; \left| \; \left(\Theta^* + \frac{2\sqrt{3}}{C} \right) \right| - \left(u_0 + \frac{2\sqrt{3}}{C} \right) \;\; log_e \;\; \left| \; \left(u_0 - \frac{2\sqrt{3}}{C} \right) \right| \right. \\ &\quad - \left. \left(\Theta^* - \frac{2\sqrt{3}}{C} \right) \;\; log_e \;\; \left| \; \left(\Theta^* - \frac{2\sqrt{3}}{C} \right) \right| + \left(u_0 - \frac{2\sqrt{3}}{C} \right) \;\; log_e \;\; \left| \; \left(u_0 - \frac{2\sqrt{3}}{C} \right) \right| \right\} \end{split}$$

TABLE 18. SUMMARY, LONG SHELLS, HIGH LOADING, 6

	SHELL TYPE	PRESSURE LOADING TYPE
TYPE	LONG C ² > 6	HIGH p>1 + $\frac{6}{C^2}$ p $\neq \frac{3}{2}$
	$y_1 = u_0 - \theta_1 + \frac{\sqrt{3}}{2C} \log_e \left[\frac{\left \theta_1 + \frac{2\sqrt{3}}{C} \right }{\left \theta_1 - \frac{2\sqrt{3}}{C} \right } \right]$	
CONDITIONS	$\tau_{1} \leq \tau \leq \tau_{0} \qquad \theta_{1} = \frac{2\sqrt{3}}{C} \qquad \frac{\left[\text{coth (A)}\right]}{\left[1 + \frac{2\sqrt{3}}{Cu_{0}}\right]}$	$\frac{+\frac{2\sqrt{3}}{Cu_{o}}}{+\frac{2\sqrt{3}}{Cu_{o}}}, A = \frac{C(1-u_{o})}{\sqrt{3}}$ $\tau_{1} = p - \left\{ \frac{(p-1)^{3}}{(2p-3)} \left[2 - \frac{C^{2}}{6} \theta^{2} \right] \right\}^{\frac{1}{2}},$
	0 ≤ x ≤	$\begin{cases} y & y \leq 1 - \frac{\sqrt{6}}{C} \end{cases}$
MOMENT RESULTANT		m _x = -1
MEMBRANE RESULTANT		$n_{\varphi} = 0$
DISPLACEMENT	w(x,	$(7) = \frac{1}{2} \frac{(p-1)}{u_0} \times$
VELOCITY		
ACCELERATION		₩ = 0
TIME To	$\tau_{\rm o} = \tau_{\rm 1}$	$+\frac{\left(p-\tau_{1}\right)\left(1-y_{1}\right)}{\left[1-y_{1}+\frac{\sqrt{6}}{c}\right]}$
DISPLACEMENT AT REST		w(x, τ _o)

TABLE 19. SUMMARY, LONG SHELLS, HIGH LOADING, 7

	SHELL TYPE	PRESSURE LOADING TYPE
TYPE	LONG C ² > 6	$HIGH p > 1 + \frac{6}{c^2} \qquad p \neq \frac{3}{2}$
	ן ני כ	
CONDITIONS	$\theta_1 = \frac{2\sqrt{3}}{C} \begin{bmatrix} \text{with} \\ 1 + \text{with} \end{bmatrix}$	$\frac{(A) + \frac{2\sqrt{3}}{Cu_0}}{\frac{2\sqrt{3}}{Cu_0} \coth{(A)}}, A = \frac{C(1 - u_0)}{\sqrt{3}}$ $\tau_1 = p - \left\{ \frac{(p-1)^3}{(2p-3)} \left[2 - \frac{C^2}{6} \theta^2 \right] \right\} \%$
	$y \leqslant x \leqslant 1 \qquad y \leqslant 1 - \frac{\sqrt{6}}{C}$	$y = \begin{bmatrix} 1 - \frac{6}{C^2} & \frac{1}{\left(1 - y_1\right)^2} \end{bmatrix} \frac{\left(1 - y_1\right)}{\left(p - \tau_1\right)} \left(\tau - \tau_1\right) + y_1$ $\dot{y}(\tau) = \begin{bmatrix} 1 - \frac{6}{C^2} & \frac{1}{\left(1 - y_1\right)^2} \end{bmatrix} \frac{\left(1 - y_1\right)}{\left(p - \tau_1\right)}$
MOMENT AND MEMBRANE RESULTANT	$m_x = 1 + \frac{1}{(1-y)^3} \left[-4x^3 + 6(1 + \frac{1}{x^3})^3 \right]$	y) $x^2 - 12yx - 2(1 - 3y)$] $n_{\varphi} = -1$
DISPLACEMENT	1	$C^{2}\left\{A_{1}\left(\tau-\tau_{1}\right)-\frac{1}{2}B_{1}\left(\tau^{2}-\tau_{1}^{2}\right)\right\}+$
	$ \left \begin{array}{c} 6 \left\{ \frac{1}{B_1} \log_e \left \frac{\left(C_1 - B_1 \tau \right)}{\left(C_1 - B_1 \tau_1 \right)} \right + \frac{(1 - x)}{B_1} \right\} \end{array} \right $	$\frac{1}{\left(C_{1}-B_{1}\tau\right)}-\frac{1}{\left(C_{1}-B_{1}\tau_{1}\right)}$ (SEE NEXT PAGE FOR MORE INFORMATION.)
VELOCITY	$\dot{\mathbf{w}} = \frac{\left[1 - \frac{6}{C^2} \frac{1}{(1 - y)^2}\right] (p - \tau_1)}{\left[1 - \frac{6}{C^2} \frac{1}{(1 - y_1)^2}\right]^{(1 - y_1)}}$	$\frac{1}{1+c} (x-y) = \frac{\left(p-\tau_1\right)}{\left(1-y_1\right)} \frac{\left[x-y-\frac{6}{C^2} \frac{(x-y)}{(1-y)^2}\right]}{\left[1-\frac{6}{C^2} \frac{1}{\left(1-y_1\right)^2}\right]}$
ACCELERATION	$\ddot{w} = -\left[1 + \frac{6}{C^2}\right]$	$\left\{ \frac{2(x-y)}{(1-y)^3} - \frac{1}{(1-y)^2} \right\} \right]$
TIME To	$\tau_{o} = \tau_{1}$	$+ \frac{\left(p-\tau_1\right)\left(1-y_1\right)}{\left[1-y_1+\frac{\sqrt{6}}{C}\right]}$
DISPLACEMENT AT REST	$w(y_0, \tau_0)$ when $y = y_0 = 1 - \frac{\sqrt{6}}{C}$	the velocity becomes zero. (SEE NEXT PAGE FOR MORE INFORMATION.)

TABLE 19. (Cont.)

$$A_{1} = x - y_{1} + \left[1 - \frac{6}{C^{2}(1 - y_{1})^{2}}\right] \frac{(1 - y_{1})}{(p - \tau_{1})} \quad \tau_{1}$$

$$B_{1} = \left[1 - \frac{6}{C^{2}} \frac{1}{(1 - y_{1})^{2}}\right] \frac{(1 - y_{1})}{(p - \tau_{1})}$$

$$C_{1} = 1 - y_{1} + \left[1 - \frac{6}{C^{2}} \frac{1}{(1 - y_{1})^{2}}\right] \frac{(1 - y_{1})}{(p - \tau_{1})}$$

$$D_{1} = \frac{(1 - y_{1}) (p - \tau_{1})}{\left[C^{2}(1 - y_{1})^{2} - 6\right]}$$

TABLE 20. GEOMETRICAL AND MATERIAL CHARACTERISTICS OF MODEL

$\triangle p_{CR} = \sigma_{y}(\frac{h}{a})$ $\left[1 + \frac{4ah}{L_{T}^{2}}\right] (psi)$	524.569	343.089	343.089	986.432	986.432
SURFACE DENSITY (LB/IN ²)	0.0387618	0.0387618	0.0387618	0.0041601	0.0041601
YIELD STRESS øy (psi)	50,183.0	50,183.0	50,183.0	100,000.0	100,000.0
POISSON'S RATIO	0.300	0:300	0.300	0.300	0.300
YOUNG'S MODULUS E (psi)	30.0 × 10 ⁶				
LENGTH L _T (IN)	3.5430	10.630	10.630	3.210	3.210
THICKNESS h (=2H) (IN)	0.112992	0.112992	0.112992	0.0147	0.0147
RADIUS a (IN)	17.697	17.697	17.697	1.503	1.503
MODEL NO.	•	2	ဇ	4	ស

TABLE 20. (CONTINUED)

MODEL NO.	T DURATION OF PRESSURE (SEC)	NORMALIZING AXIAL FORCE No (LBF/IN)	NORMALIZING BENDING MOMENT M0 (LBF-IN/IN)	NONDIMENSIONAL PRESSURE PARAMETER $(p = \frac{a}{2\sigma_v H} P)$	PEAK PRESSURE P (psi)	$c^2 = \frac{L_T^2}{2ah}$	TYPE OF ANALYSIS
-	0.10 × 10 ⁻³	5670.28	160.174	1.87261	0.009	3.13881	SHORT SHELLS LOW LOADING
2	0.10 × 10 ⁻³	5670.28	160.174	1.87261	0.009	28.2546	LONG SHELLS HIGH LOADING
8	0.10 x 10 ⁻³	5670.28	160.174	1.63853	525.0	28.2546	LONG SHELLS HIGH LOADING
4	0.10 × 10 ⁻²	1470.0	5.40225	1.22694	1200.0	233.187	LONG SHELLS HIGH LOADING
5	0.10 × 10 ⁻¹	1470.0	. 5.40225	1.00916	987.0	233.187	LONG SHELLS LOW LOADING

TABLE 21. RESULTS FOR MODEL NO. 1 (SHORT SHELLS, LOW LOADING CASE) $\{P=600\ psi\}$

DISPLACEMENT/THICKNESS	0.000000E+00 0.5708B4E-02 0.114177E-01 0.171265E-01 0.28354E-01 0.342530E-01 0.342530E-01 0.456707E-01 0.513796E-01	
NONDIMENSIONAL DISPLACEMENT	0.000000E+60 0.201957E-01 0.403913E-01 0.405870E-01 0.807827E-01 0.10978E+00 0.121174E+00 0.141370E+00 0.161565E+00 0.181761E+00	VELDCITY (IN/SEC) 0.000000E+00 0.281979E-02 0.1379E-02 0.11279E-02 0.140947E-02 0.704947E-02 0.704947E-02 0.563958E-02 0.704947E-02 0.140989E-02
DISPLACEMENT NONDIN	000000E+00 645053E-03 129011E-02 193516E-02 322527E-02 387032E-02 516043E-02 580548E-02 645053E-02	TIME (SEC) 0.000000E+00 0.250000E-04 0.750000E-04 0.100000E-04 0.101797E-03 0.10789E-03 0.10785E-03 0.112582E-03 0.114380E-03
RESIDUAL DISPL	00 00 00 00 00 00 00 00 00 00 00 00 00	0.00000E+00 0.00000E+00 0.882834E-01 0.176567E+00 0.264850E+00 0.353134E+00 0.264850E+00 0.220709E+00 0.176567E+00 0.441417E-01 0.441417E-01
NONDIMENSIONAL HALFLENGTH	0.000000 0.100000 0.200000 0.300000 0.500000 0.500000 0.700000 0.8000000 1.000000	NGNDIMENSIGNAL TIME NDR 0. 000000E+00 0. 250000E+00 0. 750000E+00 0. 750000E+01 0. 101797E+01 0. 103392E+01 0. 107190E+01 0. 108987E+01 0. 112582E+01 0. 114380E+01

TABLE 22. RESULTS FOR MODEL NO. 2 (LONG SHELL, HIGH LOADING CASE) (P $\approx 600~\text{psi}$)

NONDIMENSIONAL DISPLACEMENT BY TRAPEZOIDAL RULE

0000
0.0000 0.
0.0055 0.
0.0221 0.
0.0497 0.
0.1203 0.
0. 1217 0.
Ö
0. 1217 0.
o
0.1217 0.2632
0. 1217 0.

NONDIMENSIONAL DISPLACEMENT BY TRAPEZOIDAL RULE

0000	. 0273	1091	2454	4363	5674	6029	7469	7953	8009	8051	8076	8085
0	0	0	0	0	0	0	0	0	0	0	0	0
												8035
0	0	0	o	0	0	0	0	0	o	0	o	o
_	_	_	_	_	_	_		~			_	٠.
0	0	0	0	0	0	0	0	0	0	0	0	0
0000	0273	1091	2454	4363	5674	6651	7251	7526	7546	7558	7565	7567
Ö	Ö	o	Ġ	Ö	Ö	ä	o	o	Ö	o	Ö	Ö
0.00000	0.250000	0. 500000	0.750050	1. 000000	1.166028	1.332056	1.498084	1.664112	1.694489	1. 724866	1.755243	1. 785620
	000000 0.0000 0.0000 0.0000 0.00000	000000 0.0000 0.0000 0.0000 0.0000 0. 250000 0.0273 0.0273 0.0273 0.0273 0.	000000 0.0000 0.0000 0.0000 0.0000 0. 250000 0.0273 0.0273 0.0273 0.0273 0. 500000 0.1091 0.1091 0.1091 0.1091 0.	000000 0.0000 0.0000 0.0000 0.0000 0. 250000 0.0273 0.0273 0.0273 0.0273 0. 500000 0.1091 0.1091 0.1091 0.1091 0. 750050 0.2454 0.2454 0.2454 0.2454 0.	000000 0.0000 0.0000 0.0000 0.0000 0.250000 0.0273 0.000000 0.4363 0.4363 0.4363 0.00000	000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.250000 0.0273	000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.250000 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.1091 0.1091 0.1091 0.2454 0.2454 0.2454 0.2454 0.2454 0.5474 0.5474 0.5474 0.5474 0.5474 0.5474 0.5479 0.4709 0.4709 0.4709 0.4709	000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.250000 0.0273	000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.250000 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.02750 0.0273 0.0273 0.02750 0.02750 0.02750 0.02750 0.02750 0.02750 0.02751	000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.250000 0.0273 0.0275	000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.250000 0.0273 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.02786 0.0273	000000 0.0000 0.0000 0.0000 0.0000 0.250000 0.0273 0.0274 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0273 0.0274 0.0273 0.0274

TABLE 22. (CONTINUED)

NONDIMENSIONAL HALFLENGTH	_	RESIDUAL DISPLACEMENT (IN.)		NONDIMENSIONAL DISPLACEMENT	L-
	000000 100000 200000	-	+00		0.000000E+00 0.344022E-01 0.743981E-01
0. 30C 0. 40C 0. 452	300000 400000 493312	0. 131764E-01 0. 179908E-01 0. 225695E-01	01110	0. 412534E+00 0. 543264E+00 0. 706617E+00	0.116614E+00 0.159222E+00 0.199744E+00
	496656 500000 600000	0. 226241E-01 0. 226788E-01 0. 241686E-01	101		
	700000 B00000 900000 000000	0.250165E-01 0.254925E-01 0.256654E-01 0.258238E-01	011111	0. 783230E+00 0. 798132E+00 0. 803544E+00 0. 808506E+00	0.221401E+00 0.225613E+00 0.227143E+00 0.228546E+00
NONDIMENSIONAL TIME	NORMALIZED VEL	VELDCITY (1/SEC)	TIME (SEC)	VELOCITY (IN/SEC)	
				0. 000000E+00 0. 6967B1E-02 0. 13935EE-01 0. 209034E-01	
0. 100000E+01 0. 116603E+01 0. 133206E+01 0. 149808E+01 0. 16441E+01 0. 172487E+01 0. 175524E+01 0. 175524E+01	0, 8/200 0, 54055 0, 37455 0, 20845 0, 11144 0, 58015 0, 25455	8/260/E+00 706579E+00 374523E+00 208495E+00 161359E+00 111449E+00 580124E-01 254936E-16	0. 100000E-03 0. 116603E-03 0. 147808E-03 0. 169449E-03 0. 172487E-03 0. 175524E-03	0. 225453E-01 0. 172453E-01 0. 117243E-01 0. 645937E-02 0. 515385E-02 0. 355970E-02 0. 185293E-02 0. 185293E-02	

TABLE 23. RESULTS FOR MODEL NO. 3 (LONG SHELLS, HIGH LOADING CASE) (P = 525 psi)

NONDIMENSIONAL DISPLACEMENT BY TRAPEZOIDAL RULE

0. 5883	0.0000 0.0200 0.0798 0.1796 0.3193 0.4873 0.4555 0.4710 0.4719 0.4719	
0. 5767	0.0000 0.0200 0.0778 0.3173 0.3817 0.4557 0.4567 0.4681 0.4681	
0. 5000	0.0000 0.0173 0.0692 0.2768 0.3308 0.3400 0.4007 0.4020 0.4022	
0.4000	0.0000 0.0138 0.0254 0.2214 0.2214 0.2214 0.3147 0.3147 0.3149	
0.3000	0.0000 0.0104 0.0415 0.1661 0.1776 0.2270 0.2270 0.2270 0.2270 0.2270 0.2270	
0. 2000	0.0000 0.0069 0.00277 0.1310 0.1420 0.1454 0.1454 0.1454 0.1454 0.1454	
0. 1000	0.0000 0.0035 0.0138 0.0554 0.0554 0.0671 0.0671 0.0671 0.0671	
0.0000		
TIME/DISTANCE	0.000000 0.250000 0.500000 1.113639 1.27278 1.340917 1.454554 1.481397 1.508238 1.561920	

NONDIMENSIONAL DISPLACEMENT BY TRAPEZOIDAL RULE

TIME/DISTANCE	0. 6000	0. 7000	0. 8000	0. 9000	1. 0000	
0.000000		00000	0.0000	0 0000	0.0000	
0. 250000		0.0200				
0. 500000		0.0798				
0.750000						
1.000000	0.3193	0.3193	0.3193	0.3193	0.3193	
1.113639						
1 227278						
1.340917						
1. 454556						
1.481397				0.5083		
1.508238						
1.535079		0.4962	0.5071	0.5126		
1.561920	0.4756	0.4965				

TABLE 23. (CONTINUED)

DISPLACEMENT/THICKNESS	0.000000E+00 0.189637E-01 0.411029E-01 0.648890E-01 0.890045E-01 0.13683E+00 0.13573E+00 0.13573E+00 0.13573E+00 0.13573E+00 0.13573E+00 0.13573E+00 0.13573E+00 0.145048E+00	
NONDIMENSIONAL DISPLACEMENT	0.000000E+00 0.670861E-01 0.145406E+00 0.229552E+00 0.314864E+00 0.402168E+00 0.47551E+00 0.475576E+00 0.475576E+00 0.51551E+00 0.516511E+00	VELGCITY (IN/SEC) 0.000000E+00 0.509870E-02 0.101974E-01 0.152961E-01 0.152961E-01 0.152961E-01 0.152961E-01 0.153961E-01 0.153961E-01 0.153961E-01 0.153620E-02 0.587620E-02 0.587620E-02
DISPLACEMENT NONDIM	000000E+00 214274E-02 464430E-02 10056BE-01 128453E-01 149954E-01 150927E-01 151900E-01 151900E-01 162117E-01 163197E-01	TIME (SEC) 0.000000E+00 0.250000E-04 0.750000E-04 0.103000E-03 0.11344F-03 0.12728E-03 0.134092E-03 0.150824E-03 0.150824E-03 0.155828E-03
RESIDUAL DISPLA	0.000 0.001484 0.00103 0.1284 0.1284 0.1284 0.1284 0.1284 0.1284 0.1284	0. 000000E+00 0. 159633E+00 0. 159633E+00 0. 319265E+00 0. 478B98E+00 0. 524B92E+00 0. 524B92E+00 0. 524B92E+00 0. 183975E+00 0. 183975E+00 0. 142413E+00 0. 142413E+00 0. 512341E-01 296941E-16
NONDIMENSIONAL HALFLENOTH	0. 000000 0. 100000 0. 200000 0. 300000 0. 500000 0. 588343 0. 600000 0. 700000 1. 000000	NONDIMENSIONAL TIME NDR 0.000000E+00 0.250000E+00 0.750000E+00 0.10000E+01 0.11364E+01 0.13478E+01 0.145456E+01 0.150824E+01 0.150824E+01 0.150824E+01

TABLE 24. RESULTS FOR MODEL NO. 4 (LONG SHELLS, HIGH LOADING CASE)
(P = 1200 psi)

NONDIMENSIONAL DISPLACEMENT BY TRAPEZOIDAL RULE

0.5000	0.0000 0.0034 0.0284 0.0638 0.1135 0.1328 0.1328 0.1392 0.1392 0.1392
0 • 4 0 0 0	0.0000 0.0071 0.0284 0.0638 0.1135 0.1247 0.1328 0.1382 0.1382 0.1382
0.3684	0.0000 0.0071 0.0284 0.0135 0.1135 0.1324 0.1371 0.1371 0.1371
0.3367	0.0000 0.0071 0.0284 0.0138 0.1135 0.1312 0.1344 0.1351 0.1351
0.3000	0.0000 0.0063 0.0253 0.0253 0.101 0.1106 0.1189 0.1194 0.1194
0.2000	0.0000 0.0042 0.0168 0.0579 0.06734 0.0771 0.0771
0.1000	0.0000 0.0021 0.0084 0.0190 0.0337 0.0367 0.0367 0.0367 0.0367
000000	
TIME/DISTANCE	0.00000 0.250000 0.500000 0.750000 1.056603 1.15206 1.226411 1.226489 1.226643 1.226643

NONDIMENSIONAL DISPLACEMENT BY TRAPEZDIDAL RULE

IME/OISTANCE	0.009*0	0.7000	0.8000	0 0 0 0 0 0	1.0000
000000-0	0000	0000000	000000	0000.0	0.0000
. 0	100		0.0071	0.7	0.0071
0.500000	0			328	
0.750000		0.0638	063	9	0.0638
1.000000			0.1135	113	•
1.056603			124	124	0.1247
1.113206			132	132	0.1328
1.169809		•	.137	137	0.1376
1-226411		•	139	139	0.1392
		•	.139	139	0.1392
, ,			.139	139	0.1392
		•	.139	139	0.1392
	0.1392	0.1392	0.1392	·	0.1392

TABLE 24. (CONTINUED)

	0.000000 0.100000		•00000E+00				
	0000000	000	0.3334575+01		06	0.000000E+00	0.000000E+00
		0	0.700420E+01			0.771022E-01	0.476476E+03
.	0000000	••	108434E+02		J).119365E+00	0.737649E+
<i>-</i>	1.336720	0	122694E+02		J	J.135062E+00	0.834654E+
	1.368360		124506E+02		3	.137057E+00	0.846982E+03
•	000004-0	•	125576E+02		J	1.138234E+00	0.854257E+
J	0000000	•	126458E+02		C	139205E+00	0.860259E+
J	000009*		126458E+02		9	.139205E+00	0.860259E+(
J	000001	.0	126458E+02		0	.139205E+00	0.860259E+
)	000008*	•	126460E+02		3	1.139207E+00	0.860270E+
_	000006*		0.126466E+02		-).139213E+00	0.860310E+0
7	00000001	0	.126472E+02		0	0.139220E+00	0.860351E+03
NONDIMENSIONAL TIME	1E NORMAL	ALIZED VELOCITY (1/SEC)	J	TIME (SEC)	VELC (IN)	VELOCITY (IN/SEC)	
0.00000000	00	0.000000E+			0 • 000000E + 00	0E+00	
.250000E+1	00	0.567347E-			0.515395	5E+01	
*500000E+	00	0-113469E+			0.103075	3E+02	
0.750000E+00	00	0.170204E+00	00 0.750000E-03		0-154619E+02	€+02	
.100000E+1	11	0.226939E+			0.206158	3E+02	
.105660E+1	11	0.170336E+			0.154738	3E+02	
.111321E+	11	0-113733E+			0.103319	€+02	
•116981E+	01	0.571302E-			0.518988	3E+01	
.122641E+1	01	0.527339E-			0.479051	1E-01	
.122649E+1	11	0.40844BE-			0.371046	SE-01	
.122657E+(זו	0.282408E-			0.256548	3E-01	
.122664E+01)1	0-147207E-03			0.133728	3E-01	
.122672E+0) 1	0.161556E-16		E-02	0-146763E-1	3E-14	

TABLE 25. RESULTS FOR MODEL NO. 5 (LONG SHELLS, LOW LOADING CASE) $(P\ =\ 987\ psi)$

NONDIMENSIONAL HINGE VELOCITY	0. 000000E+00 0. 000000E+00 0. 000000E+00 0. 000000E+00 0. 111922E+04 0. 111922E+04 0. 111922E+04 0. 111922E+04 0. 111922E+04 0. 111922E+04 0. 111922E+04
NONDIMENSIONAL POSITION OF HINGE CIRCLE	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.104949E+00 0.314847E+00 0.314847E+00 0.524746E+00 0.524746E+00 0.524746E+00 0.524746E+00 0.524746E+00 0.534746E+00
VELOCITY (1/SEC)	0.000000E+00 0.217621E-03 0.435243E-03 0.652864E-03 0.870421E-03 0.774021E-03 0.578413E-03 0.478774E-03 0.376255E-03 0.268776E-03 0.150453E-03
NONDIMENSIONAL TIME	0. 000000E+00 0. 250000E+00 0. 50000E+00 0. 750000E+01 0. 100009E+01 0. 100019E+01 0. 100028E+01 0. 10003BE+01 0. 10003BE+01 0. 10003BE+01 0. 10003BE+01 0. 10003BE+01 0. 10003BE+01 0. 10003BE+01 0. 10003BE+01

TABLE 25. (CONTINUED)

DISPLACEMENT/THICKNESS	0. 000000E+00 0. 268971E+02 0. 537943E+02 0. 107589E+03 0. 13486E+03 0. 161383E+03 0. 181383E+03 0. 242257E+03	
NONDIMENSIONAL DISPLACEMENT	0. 000000E+00 0. 435243E-04 0. 870486E-04 0. 130573E-03 0. 174097E-03 0. 201146E-03 0. 348194E-03 0. 392014E-03	VELDCITY (IN/SEC) 0.000000E+00 0.197694E+01 0.395388E+01 0.703144E+01 0.51486E+01 0.525430E+01 0.525430E+01 0.341802E+01 0.341802E+01 0.34164E+01 0.34576E+01
	000000E+00 395388E+00 790776E+00 118616E+01 158155E+01 197694E+01 237233E+01 276772E+01 316310E+01 356117E+01	TIME (SEC) 0.000000E+00 0.250000E-02 0.750000E-02 0.100009E-01 0.100019E-01 0.100038E-01 0.100047E-01 0.100046E-01 0.100066E-01 0.100066E-01
RESIDUAL DISPLACEMENT	0,000 0,395 0,1186 0,1186 0,1581 0,2375 0,316 0,3561	NDRMALIZED VELDCITY (1/SEC) (1/SEC) 0.000000E+00 0.217621E-03 0.435243E-03 0.652864E-03 0.774021E-03 0.774021E-03 0.774021E-03 0.774021E-03 0.77402E-03 0.26877E-03 0.47877E-03 0.26877E-03 0.150453E-03
ALFLENGTH	0.000000 0.000000 0.000000 0.000000 0.000000	
NONDIMENSIONAL HALFLENGTH		NGNDIMENSIDNAL TIME 0.000000E+00 0.250000E+00 0.50000E+00 0.750000E+00 0.100009E+01 0.10003EE+01 0.10003EE+01

REFERENCES

- 1. Hodge, P. G. Jr., <u>Impact Pressure Loading of Rigid-Plastic Cylindrical</u>
 Shells, Polytechnic Institute of Brooklyn, PIBAL Report No. 255, May 1954.
- 2. Hodge, P. G. Jr., "Impact Pressure Loading of Rigid-Plastic Cylindrical Shells," Journal of the Mechanics and Physics of Solids, Vol. 3, 1955, pp. 176-188.
- 3. Jones, N., "The Influence of Large Deflections on the Behavior of Rigid-Plastic Cylindrical Shells Loaded Impulsively," <u>Journal of Applied Mechanics</u>, Vol. 37, Jun 1970, pp. 416-425.
- 4. Duszek, M., "Plastic Analysis of Cylindrical Shells Subjected to Large Deflections," Archiwum Mechaniki Stosowanej, No. 5, Vol. 18, 1966, pp. 599-614.
- 5. Kuzin, P. A. and Shapiro, G. S., "On Dynamic Behavior of Plastic Structures," Proceedings of 11th International Congress of Applied Mechanics, Springer Verlag, Munich, Germany, 1964, pp. 629-635.
- 6. Sankaranarayanan, R., "Dynamic Response of Plastic Circular Cylindrical Shells Under Lateral and Hydrostatic Pressures," Journal of the Aeronautical Society of India, Vol. 14, No. 1, Feb 1962, pp. 1-9.
- 7. Hodge, P. G. Jr., Plastic Analysis of Structures, McGraw-Hill, 1959, Chapters 11 and 13.
- 8. Hodge, P. G. Jr., The Rigid-Plastic Analysis of Symmetrically Loaded Closed Cylindrical Shells, Polytechnic Institute of Brooklyn, PIBAL Report No. 246, Mar 1954.
- 9. Sankaranarayanan, R., "Plastic Interaction Curves for Circular Cylindrical Shells Under Combined Lateral and Axial Pressures," <u>Journal of Franklin Institute</u>, Vol. 270, No. 5, Nov 1960, pp. 359-366.
- 10. Klement, P., "Theorie der elastisch-plastischen Zylinderschale,"
 Oesterreichisches Ingenieur Archiv, Vol. 16, 1962, pp. 199-211.
- 11. Onat, E. T., "The Influence of Geometry Changes on the Load-Deformation Behavior of Plastic Solids," in Plasticity, Proceedings of 2nd Symposium on Naval Structural Mechanics, Pergamon Press, New York, 1960, pp. 225-238.

REFERENCES (Cont.)

- 12. Duszek, M., "Load-Deflexion Relations for Rigid-Plastic Cylindrical Shells beyond the incipient Collapse Load," <u>Int. J. Mech. Sciences</u>, Vol. 12, 1970, pp. 839-848.
- 13. Lance, R. H. and Soechting, J. F., "A Displacement Bounding Principle in Finite Plasticity," Int. J. Solids and Structure, Vol. 6, 1970, pp. 1103-1118.
- 14. Lintholm, U. S. and Bessey, R. L., Elastic-Viscoplastic Response of Clamped Beams Under Uniformly Distributed Impulse, Technical Report AFML-TR-68-396, Jan 1969.
- 15. Save, M. A. and Massonnett, C. E., Plastic Analysis and Design of Plates, Shells, and Discs, North-Holland Publ. Co., Amsterdam, 1972. (See section 8.3.5, pp. 350-356 on comments on what happens to the limit load when equations of equilibrium are referred to deformed state. See pp. 24-36 on limit theorems.)
- 16. Massonnett, C. E.; Olszak, W.; and Phillips, A., "Plasticity in Structural Engineering. Fundamentals and Applications," International Centre for Mechanical Sciences, Udine, Italy, CISM No. 241, Springer Verlag, 1979. (See pp. 50-55 for rigid perfectly plastic bodies and influence in geometry changes.)
- 17. Kachanov, L. M., Foundations of the Theory of Plasticity, North-Holland Publ. Co., Amsterdam, 1971.
- 18. Hodge, P. G. Jr., Limit Analysis of Rotationally Symmetric Plates and Shells, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1961.
- 19. Mendelson, A., <u>Plasticity: Theory and Application</u>, McMillan Co., New York, 1970. (For Rigid-plastic model, see pp. 16-20; for limit theorems, see pp. 312-317.)
- 20. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, 1979, pp. 38-45.
- 21. Calladine, C. R., Engineering Plasticity, Pergamon Press, 1969, pp. 55-58.
- 22. Timoshenko, S. P. and Woinowsky-Krieger, S., Theory of Plates and Shells, McGraw-Hill, 2nd Edition, 1959, pp. 466-471 (Chapter 15).
- 23. Course Notes on "Low Velocity Impact Engineering," Computational Mechanics Associates, Baltimore, MD, 22-26 Jul 1985.
- 24. Reckling, K. A., Plastizitaeslehre und ihre Anwendung auf Festigkeitsprobleme, Springer-Verlag, 1967.
- 25. Gill, S. S., The Stress Analysis of Pressure Vessels and Pressure Vessel

 Components, Pergamon Press, 1970. (See Basic Principles by S. S. Gill,

 pp. 7-71.)

REFERENCES (Cont.)

- 26. Calladine, C. R., "On the Derivation of Yield Conditions for Shells," J. of Applied Mechanics, Vol. 39, Sep 1972, pp. 852-853.
- 27. Johnson, W., Impact Strength of Materials, Edwars Arnold, 1983.
- 28. Lee, E. H. and Symonds, P. S., "Large Plastic Deformations of Beams Under Transverse Impact," J. of Applied Mechanics, No. 3, Vol. 19, 1952.

NOMENCLATURE

$$A = \frac{2 \sigma H t^2}{a^2 s}$$

- a = Mean Shell radius (in.)
- c, C = Non-dimensional parameter defined as $\frac{\sqrt{2}L}{\sqrt{ah}}$
- \dot{D} = Rate of plastic work done (plastic dissipation) $\left(\frac{d}{d\tau}D\right)$ / unit area (Lb-IN/IN³*SEC)
- $\dot{\epsilon}$ = Strain rate vector with components $(\dot{\epsilon}_{\phi}, \dot{\kappa}_{x})$
- e_v = Total axial strain
- \mathbf{e}_{ϕ} = Total circumferential (hoop) strain
- $F(\tau)$ = Function with respect to non-dimensional time variable τ
- $\dot{F}(\tau)$ = Derivative of $F(\tau)$ with respect to τ
- H = Half thickness of shell (in.)
- h = Total thickness of shell (in.)
- (i,j) = Unit Vectors on (n_{ϕ}, m_{χ}) or $(e_{\phi}, \kappa_{\chi})$ space (See Appendix.)

NOMENCLATURE (Cont.)

- ** Bending curvature in axial plane (1/in.) ($\dot{\kappa}_{x}^{1}$ = Nondimensional bending strain rate and $\dot{\kappa}_{x}^{1} = \frac{H}{2} \dot{\kappa}_{x}$)
- κ_{ϕ} = Bending curvature is a plane perpendicular to the shell axis (1/in.)
- κ = Yield stress in pure shear defined in terms of $σ_y$ yield stress as $½σ_y$ (psi)
- L = Half length of shell (from stiffener to midbay) (in.)
- L_T = Total length of shell (L_T = 2L) (in.)
- M = Mass of section analyzed (Lb-sec²/in.)
- m_{χ} = Non-dimensional bending moment based on M_{χ}
- $M_0 = \sigma_y H^2 \text{ (Lb-in./in.)}$
- $\underline{n}_{A}^{(1)}$, $\underline{n}_{A}^{(2)}$ = Unit normals at point A of yield surface (See Appendix)
- $n_{B}^{(1)}$, $n_{B}^{(2)}$ = Unit normals at point B of yield surface (See Appendix)
- N_x = Membrane force/unit length defined as $\int_{-H}^{H} \sigma_x dz$ (1b./in.)
- $N_o = 2\sigma_y H \quad (1b./in.)$

NOMENCLATURE (Cont.)

- N_{ϕ} = Membrane force/unit length of axial section and a section perpendicular to the axis of cylindrical shell (defined as $\int_{-H}^{H} \sigma_{\phi} dz) \quad (1b./in.)$
- n_{φ} Non-dimensional membrane force variable based on N_{φ}
- P = External pressure, function of time, i.e., P = P (t) (psi).
 In this report it is taken as a constant
- p Non-dimensional pressure parameter $\left(=\frac{a}{4\kappa H}P\right)$
- p_0 = Non-dimensional collapse load parameter defined by $p_0 = 1 + \frac{2}{c^2}$
- P₁ Non-dimensional collapse load parameter defined by $p_1 = 1 + \frac{6}{c^2}$
- s Surface density of material (mass/unit area) (1b.-sec.²/in.³)
- t * Time variable (sec.)
- to Time period over which pressure loading P(t) is acting (sec.)
- X = Axial distance (in.)
- x = Non-dimensional variable $\left(=\frac{X}{L}\right)$
- U = Longitudinal displacement (in.)
- u Non-dimensional axial displacement $\left(\frac{U}{L}\right)$
- V = Velocity of propagation of traveling hinge (in./sec.)
- W = Radial displacement (in.)

NOMENCLATURE (Cont.)

W = Non-dimensional radial displacement variable defined by
$$w = \frac{sa}{4\kappa Ht_0^2} W = \frac{sa}{2\sigma_y Ht_0^2} = \frac{1}{aA}W$$

- () $_{x}$ = Derivative with respect to non-dimensional axial variable x
- (') = Time derivative with respect to non-dimensional time variable τ
- Square brackets indicate jump conditions of a variable (i.e., difference of its value at two points, one to the left and the other to the right of the point in question)
- α,β = Arbitrary positive constants used in Appendices
- Ex = Axial strain in middle surface of skin (otherwise known as axial inplane strain)
- E Circumferential strain in middle surface of skin (otherwise known as hoop strain)
- g = Non-dimensional stress resultant vector (n_{ϕ}, m_{χ})
- $\sigma_{\mathbf{y}}$ = Yield stress (psi)
- τ = Non-dimensional time variable (τ = t/to)
- τ_0 Non-dimensional time at which shell comes to rest
- τ₁ = Non-dimensional time

APPENDIX A

PRELIMINARY ANALYSIS

This Appendix presents the derivation of the developed solutions in a detailed way. The circular cylindrical shell is ring-stiffened, fairly long, and subjected to an external dynamic pressure load P, which, in itself, is assumed axisymmetric and whose form over time is rectangular. Because the material is assumed as rigid perfectly plastic, there will be no deformation unless the external load P exceeds the critical collapse load P_O (References A-1 and A-2).

For the purpose of solution we must have at our disposal:

- The equations of equilibrium
- 2. Strain-displacement relations
- 3. A yield condition and associated flow rule.
- 4. Conditions of continuity of certain variables, and initial and boundary conditions.

The analysis follows the five steps of the problem statement listed in the main text for all four cases listed below. (It will become clear after each solution in later appendices why such division takes place.)

- 1. Short shell and low intensity loading.
- 2. Long shell and low intensity loading.
- 3. Short shell and high intensity loading.
- 4. Long shell and high intensity loading.

EQUATIONS OF EQUILIBRIUM AND STRAIN - DISPLACEMENT EQUATIONS

If we consider a section of a shell element of axial length dX and circumferential length ad ϕ (where a stands for the shell radius) of mass M (Figures A-1 and A-2) acted on by external pressure P, we can obtain Timoshenko's equations of equilibrium A-3 in the undeformed configuration. The external loads for this axisymmetric case are resisted by internal bending moment/unit length, M, and membrane force/unit length, N,. The equilibrium equation is:

$$\frac{N_{\phi}^{2}}{\partial t^{2}}W = a \, d\phi dX \, \frac{\partial^{2}}{\partial X^{2}}M_{x} + a \, d\phi dX + a \, dX \, d\phi P \qquad (A-1)$$

Replacing the mass per unit area s in Equation (A-1) by

$$s = \frac{M}{a \, d\phi dX} \tag{A-2}$$

we have

$$s \frac{\partial^2 W}{\partial t^2} = \frac{\partial^2}{\partial X^2} M_X + \frac{1}{a} N_{\phi} + P \tag{A-3}$$

In the paragraphs that follow, equations will be written in non-dimensional form. The objective is to obtain certain relations between certain groups of parameters, on one hand, while on the other (it is easier), to work with non-dimensional groups.

We introduce the following notation:

$$\tau = t/t_{0} \tag{A-4}$$

$$x = \frac{X}{L} \tag{A-5}$$

$$m_{x} = \frac{M_{x}}{M_{o}} = \frac{M_{x}}{\sigma_{y}H^{2}} \tag{A-6}$$

$$n_{\phi} = \frac{N_{\phi}}{N_{O}} = \frac{N_{\phi}}{2\sigma_{y}H} \tag{A-7}$$

$$p = \frac{P}{\sigma_y} \frac{a}{2H}$$
 (A-8)

$$w = \frac{sa}{2\sigma_y Ht^2} W \tag{A-9}$$

$$c^2 = \frac{L^2}{nH}, \qquad (A-10)$$

where L is the half length of the shell, H is the half thickness, σ_y is the yield stress, t₀ is the duration (secs) of the rectangular pressure loading, and X is the axial distance.

Using these equations, Equation (A-3) is transformed to

$$\frac{1}{2c^2} \frac{\partial^2}{\partial x^2} m_x + n_\phi + p - \frac{\partial^2}{\partial x^2} w = 0$$
 (A-11)

This represents the equilibrium equation of an element in the undeformed configuration. It is written in terms of two generalized stress resultants only, $m_{_{\mathbf{X}}}$ and $n_{_{\mathbf{0}}}$. This is due to the axisymmetric nature of the problem and the absence of axial loads. These resultants appear in the plastic dissipation rate $\dot{\mathbf{D}}$, depending on the stress-state and the yield surface (References A-1 and A-4).

DISSIPATION EQUATIONS

The purpose of the analysis that follows is to obtain the plastic dissipation rate in terms of the strain rates associated with the generalized stress resultants. The step is vital because it identifies the strain space corresponding to the space of "stress resultants" of the yield surface (References A-1 and A-4).

To further the analysis, we state the strain-displacement equations from Reference A-3. The inplane axial $(\epsilon_{_{X}})$ and circumferential strains $(\epsilon_{_{\varphi}})$ as well as curvatures $\kappa_{_{X}}$ and $\kappa_{_{\varphi}}$ are:

$$\varepsilon_{\mathbf{x}} = \frac{\partial \mathbf{U}}{\partial \mathbf{X}} \tag{A-12}$$

$$\varepsilon_{\phi} = -\frac{1}{a}W \tag{A-13}$$

$$\kappa_{\mathbf{x}} = \frac{\partial^2}{\partial \mathbf{x}^2} \mathbf{W} \tag{A-14}$$

$$\kappa_{\dot{\Phi}} = 0 \tag{A-15}$$

where U and W are the axial and radial displacements at the midsurface of the shell, independent of the thickness, variable z. They depend on X only due to axisymmetry (Reference A-3).

The total strains $\boldsymbol{e}_{\boldsymbol{x}},~\boldsymbol{e}_{\boldsymbol{\varphi}}$ are given by

$$e_x = \epsilon_x + z \kappa_x = \frac{\partial U}{\partial X} + z \frac{\partial^2}{\partial X^2} W$$
 (A-16)

$$e_{\phi} = \epsilon_{\phi} + z \kappa_{\phi} = -\frac{1}{a}W \tag{A-17}$$

We introduce a non-dimensional thickness variable ζ , as

$$\zeta = \frac{z}{H} \tag{A-18}$$

and $A = \frac{2\sigma_y Ht^2}{a^2s}$ (A-19)

Naturally, A is a positive quantity.

We can write Equations (A-16) and (A-17) as

$$e_{x}^{-} \frac{\partial u}{\partial x} + \zeta H \kappa_{x}$$
 (A-20)

$$e_{A} = -Aw \qquad (A-21)$$

and Equations (A-12), (A-13), (A-14), and (A-15) as

$$\varepsilon_{\mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \tag{A-22}$$

$$\varepsilon_{\perp} = -Aw$$
 (A-23)

$$\kappa = \frac{1}{c^2} \frac{A}{H} \frac{\partial^2 w}{\partial x^2}$$
 (A-24)

$$\kappa_{\dot{\Phi}} = 0 \tag{A-25}$$

To identify which parts of the strain rates play a part in the analysis, we must compute the energy dissipated plastically (plastic dissipation rate D).

From first-principles (References A-1 and A-4), the internal rate of plastic work \dot{D}/unit area in terms of stresses and strain rates integrated over shell thickness 2H is

$$\dot{\mathbf{D}} = \int_{-\mathbf{H}}^{\mathbf{H}} (\sigma_{\mathbf{x}} \dot{\mathbf{e}}_{\mathbf{x}} + \sigma_{\phi} \dot{\mathbf{e}}_{\phi}) d\mathbf{z}$$
 (A-26)

If we introduce the non-dimensional parameters n_x , m_x , and n_ϕ by means of

$$N_{x} = N_{0} n_{x} = 2\sigma_{y} H n_{x}$$
 (A-27)

$$N_{\phi} = N_{O} n_{\phi} = 2\sigma_{y} + n_{\phi} \tag{A-28}$$

$$M_{x} = M_{o} m_{x} = \sigma_{y} H^{2} m_{x} = \frac{H}{2} N_{o} m_{x}$$
 (A-29)

Equation (A-26) can be expressed as

$$\dot{D} = \dot{\varepsilon}_{x} N_{x} + \dot{\kappa}_{x}^{1} M_{x} + \dot{\varepsilon}_{\phi} N_{\phi} = \left[\dot{\varepsilon}_{x} n_{x} + \dot{\kappa}_{x}^{1} m_{x} + \dot{\varepsilon}_{\phi} n_{\phi} \right] N_{o}$$
 (A-30)

where

$$\dot{\kappa}_{x}^{1} = \frac{H}{2} \dot{\kappa}_{x} = \frac{1}{2c^{2}} A \frac{\partial^{2} w}{\partial x^{2}}$$

and this is the only time (numerical) I does not denote differentiation.

In the present case there is no axial load ($n_{_{\rm X}}$ = 0) and Equation (A-30) becomes

$$\dot{\mathbf{D}} = \begin{bmatrix} \dot{\boldsymbol{\epsilon}}_{\phi} & \mathbf{n}_{\phi} + \dot{\kappa}_{\mathbf{X}}^{1} & \mathbf{m}_{\mathbf{X}} \end{bmatrix} \mathbf{N}_{\mathbf{O}} \tag{A-31}$$

in terms of two generalized strain rates $(\dot{\epsilon}_{\phi}, \dot{\kappa}_{x}^{1})$ and stress resultants (n_{ϕ}, m_{x}) .

We observe that we can write the generalized strain rate in terms of a two-component vector $\dot{\mathbf{e}}$, in strain space, of the form

$$\underline{\dot{e}} = (\dot{\epsilon}_{b}, \dot{\kappa}_{x}^{1})$$
(A-32)

or in view of Equations (A-23) and (A-24)

$$\dot{\epsilon} = A\left(-\dot{w}, -\frac{1}{2c^2}\dot{w}_{XX}\right) \tag{A-33}$$

where A is a constant given by Equation (A-19). Furthermore, the stress resultants, which contribute to plastic dissipation, form a two-component stress-resultant vector, $\underline{\sigma}$ of the form

$$\underline{\sigma} = (\mathbf{n}_{\underline{\phi}}, \mathbf{m}_{\underline{\mathbf{x}}})$$
(A-34)

In the analysis, a yield surface and associated flow rule must be used. The yield surface, which satisfies the Tresca yield criterion, has been developed by Drucker, Hodge, and Onat. (See References A-4 and A-5 for more details.) For the present case, the exact condition will be replaced by the simplified Tresca rectangle ABCD (Figure A-3). This locus envelopes the exact curve from the outside. According to plasticity theory, the strain rate vector $\dot{\mathbf{e}}$ must always be normal to the yield surface and directed outwards during plastic flow, except at the corners, where $\dot{\mathbf{e}}$ must lie within the space described by the (two or three) normals to the yield surface there. Furthermore, the yield surface must be convex. (See References A-4 through A-10.)

The flow rule (outward normality to yield surface), therefore, determines the direction of growth of plastic flow, which takes place along the gradient of the yield surface. For perfectly plastic materials, however, the magnitude of the strain rate cannot be determined.

Furthermore, notice that on a straight side, while the strain rate vector does not uniquely determine the state of stress [i.e., components (n_{ϕ} and m_{χ})] the plastic dissipation is unique. [See Hodge (Reference A-5), Chapter 8, pp. 195-201.] Accordingly, the strain rate vector $\dot{\epsilon}$ must be of the form indicated in Table A-1.

Here we explain how Table A-1 is constructed.

1. Region AD

We consider the region AD (except the two end points A and D which must be treated separately as they constitute "corners" on the yield surface). The equation of the outward normal to AD is:

$$\begin{array}{ccc}
\mathbf{n}_{\phi} & \mathbf{c}_{1} & -1 \leq \mathbf{c}_{1} \leq 1 \\
\end{array} \tag{A-35}$$

Its slope is $-\infty$ on the (n_{ϕ}, m_{χ}) plane. The strain components of \dot{e} are given by Equation (A-33). Since $m_{\chi} = -1$, this means that

$$-\frac{A}{2c^2}\dot{w}_{xx} \leq 0 \tag{A-36}$$

and since A > 0 , this leads to $\dot{w}_{xx} \, \geq \, 0 \, .$

Noting that n_{ϕ} is arbitrary [to the extent that it lies between (-1, 1)] and the slope of the \dot{e} vector is

$$-\frac{1}{2c^{2}}\dot{\mathbf{w}}_{\mathbf{x}\mathbf{x}} = -\infty \tag{A-37}$$

this can only be satisfied by $\dot{\mathbf{w}} = 0$.

2. Point A

At point A there are two outward normals.

a. Normal to AD =
$$n_A^{(1)}$$
 = (0, -1)

or in (i, j) notation

$$\underline{n}_{A}^{(1)} = -\underline{j} \tag{A-38}$$

b. Normal to AB =
$$n_A^{(2)}$$
 = (-1, 0) = -i

As already mentioned (and discussed in References A-1, A-4, and A-5), at a corner of the yield surface the strain rate vector $\dot{\mathbf{e}}$ must be a positive linear combination (α , β > 0) of the unit exterior normals, i.e.,

$$\alpha \, \underline{n}_{A}^{(1)} + \beta \underline{n}_{A}^{(2)} = (-\beta, -\alpha)$$
 (A-39)

By Equation (A-33), however, we note that

$$\dot{\mathbf{g}} = \mathbf{A}\left(-\dot{\mathbf{w}}, -\frac{1}{2c^2}\dot{\mathbf{w}}_{\mathbf{x}\mathbf{x}}\right) = (-\beta, -\alpha) \tag{A-40}$$

i.e., $-\beta$, $-\alpha \le 0$ and, hence,

(A-41)

$$-\frac{1}{2c^2}\dot{\mathbf{w}}_{\mathbf{x}\mathbf{x}} \leq 0$$

or

(A-42)

$$\dot{\mathbf{w}}_{\mathbf{x}\mathbf{x}} \geq 0$$

3. Point B

Similarly, at point B the outward normals are given by

a. Normal to AB at B:
$$n_{B}^{(1)} = (-1, 0) = -1$$

b. Normal to BC at B:
$$n_B^{(2)} = (0, 1) = j$$

Since \dot{e} must be a positive linear combination of $\dot{n}_B^{(1)}$ and $\dot{n}_B^{(2)}$, we have

$$\alpha \ \underline{n}_{B}^{(1)} + \beta \ \underline{n}_{B}^{(2)} = (-\alpha, \beta)$$
 (A-43)

Comparing Equation (A-43) with (A-33) we deduce that

$$-\dot{\mathbf{w}} \leq 0 \quad \text{or} \quad \dot{\mathbf{w}} \geq 0 \tag{A-44}$$

$$\frac{-1}{2c^2}\dot{\mathbf{w}}_{\mathbf{x}\mathbf{x}} \ge 0 \qquad \text{or} \qquad \dot{\mathbf{w}}_{\mathbf{x}\mathbf{x}} \le 0 \tag{A-45}$$

Table A-1 can be completed by similar arguments.

CONTINUITY CONDITIONS

The shell in question is made of material without voids or other sources of discontinuity. Consequently, the radial displacement w and velocity $\frac{\partial w}{\partial \tau}$ are continuous. If we denote "jump" conditions through brackets, then

$$[w] = 0 (A-46)$$

$$\left[\frac{\partial \mathbf{w}}{\partial \tau}\right] = 0 \tag{A-47}$$

In addition, the bending moment, m_{χ} , membrane force, n_{ϕ} , and shear force distributions must be continuous across the length of the shell.

Finally, we need to quote some results from the travelling hinge theory of Lee and Symonds. A-11, A-12 Recall that a hinge forms at some point on the structure, when the limit moment has been reached. In structural dynamics, this hinge, hinge line, or hinge circle may either be stationary or travelling with a velocity or propagation V. In the present case of our cylindrical shell, note that

a. If the hinge is stationary (V = 0), then the slope may be discontinuous, i.e.,

$$\left[\frac{\partial \mathbf{w}}{\partial \mathbf{x}}\right] \neq 0 \quad \text{or } 0 \tag{A-48}$$

b. If the hinge is travelling ($V \neq 0$), then the slope is continuous

$$\left[\frac{\partial w}{\partial x}\right] = 0 \tag{A-49}$$

INITIAL AND LOADING CONDITIONS

The shell is initially at rest. Up to time t=0 ($\tau=0$) there is no applied load. Suddenly, at t=0 ($\tau=0$) a rectangular pressure pulse of magnitude P (p) is applied on the cylindrical shell. The pressure pulse acts over a time t_0 ($\tau=1$) and then becomes zero. Consequently, the initial velocity and displacement conditions are

$$\dot{\mathbf{w}}(\mathbf{x}, 0) = 0 \tag{A-50}$$

$$\mathbf{w}(\mathbf{x}, 0) = 0 \tag{A-51}$$

At some time $t_1 > t_0$ ($\tau_1 > 1$) the body is brought to rest, i.e.,

$$\dot{\mathbf{w}}(\mathbf{x}, \tau_1) = 0 \tag{A-52}$$

The loading conditions are

$$p(x, 0) = 0$$

$$p(x, \tau) = p$$
 for $0 \le \tau \le 1$ (A-53)

$$p(x, \tau) = 0$$
 for $\tau > 1$

where p is a constant.

BOUNDARY CONDITIONS

With reference to Figure A-1, the first ring stiffener is located at x=0 (X = 0), and the second one (end of bay) at x=2 (X = 2L). At the first stiffener (x = 0) the radial displacement and velocities are zero for all times $\tau \geq 0$, i.e.,

$$\mathbf{w}(0, \tau) = 0 \tag{A-54}$$

$$\dot{\mathbf{w}}(0, \tau) = 0 \tag{A-55}$$

From the discussion in "conditions of continuity," we conclude that whether the slope of a hinge is continuous or not will depend on whether the initially formed hinge is "travelling" or not, respectively. However, at the center of the bay (x = 1) the slope must be zero

$$\mathbf{w}_{\mathbf{x}} (1, \tau) = 0 \tag{A-56}$$

Due to symmetry, the shear at the center must be zero, i.e.,

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{m}_{\mathbf{x}} (1, \tau) = 0 \tag{A-57}$$

Also observe that the non-dimensional bending moment m_{χ} and membrane force $n_{\dot{\alpha}}$ must lie on the yield locus when the structure is deforming.

From beam theory, recall that the bending moment distribution of a clamped beam has a maximum negative value at the supports (x = 0 and x = 2), while it attains a maximum positive value at the center (x = 1). Interpreting this in terms of the square yield surface, the bending moment distribution could lie anywhere along the DA, AB, BC (including corners) portions of the Tresca locus. However, we also know that due to the compressive nature of the external pressure, n_{ϕ} must be negative. This limits us along BA and the portion of AB (including corners) where n_{ϕ} is negative.

GENERAL METHOD

As already outlined in the "PROBLEM STATEMENT AND SOLUTION METHOD" section of the body of the report, the approach consists of solving the equilibrium equations involving two stress resultants, $m_{_{\rm X}}$ and $n_{_{\rm \varphi}}$, subject to initial, boundary, and jump conditions. The load consists of a non-dimensional pressure load, exceeding the collapse load $p_{_{\rm O}}$ (References A-13, A-14, and A-1) which was calculated by a limit analysis and a rigid, perfectly plastic material. In the process, we must assume (1) a kinematically admissible velocity profile, and (2) the portion of the applicable yield locus.

Based on these assumptions, we obtain a solution. We must verify its validity, i.e., none of the stress resultants must violate the yield surface. It is these conditions that impose certain constraints on our parameters, and allow certain cases to emerge.

NOTE: GLOBAL FRAME OF REFERENCE (X, Y, Z) IS THROUGH LEFT END, WHERE FIRST RING STIFFENER IS LOCATED.

FIGURE A-1. CIRCULAR CYLINDRICAL SHELL OF LENGTH 2L, DIAMETER 2a, SKIN THICKNESS h = 2H

NOTE: MASS OF SHELL IS M.

FIGURE A-2. CYLINDRICAL SHELL SUBJECTED TO RADIALLY INWARD PRESSURE P

FIGURE A-3. SIMPLIFIED TRESCA YIELD SQUARE ABCD

TABLE A-1. REGIONS ON SIMPLIFIED TRESCA SQUARE (YIELD LOCUS)

Plastic	Stress Components		Resultants Inequalities	Strain-Rate Vector			
Region				Components		Equations	Inequalities
	$\mathbf{n}_{oldsymbol{\phi}}$	m _x		ŵ	ċ "/2c ²		
AD	*	-1	$-1 \leq n_{\phi} \leq 1$	0	λ	w = 0	w " ≥ 0
A	-1	-1	*	μ	λ	*	$\dot{\mathbf{w}} \geq 0$, $\dot{\mathbf{w}}$ ≥ 0
AB	-1	*	$-1 \leq m_{X} \leq 1$	μ	0	w . = 0	$\dot{\mathbf{w}} \geq 0$
В	-1	+1	*	μ	-v	*	$\dot{\mathbf{w}} \geq 0$, $\dot{\mathbf{w}}$ ≤ 0

REFERENCES--APPENDIX A

- A-1. Hodge, P. G. Jr., Plastic Analysis of Structures, McGraw-Hill, 1959, Chapters 11 and 13.
- A-2. Hodge, P. G. Jr., The Rigid-Plastic Analysis of Symmetrically Loaded Closed Cylindrical Shells, Polytechnic Institute of Brooklyn, PIBAL Report No. 246, Mar 1954.
- A-3. Timoshenko, S. P. and Woinowsky-Krieger, S., Theory of Plates and Shells, McGraw-Hill, 2nd Edition, 1959, pp. 466-471 (Chapter 15).
- A-4. Save, M. A. and Massonnett, C. E., Plastic Analysis and Design of Plates, Shells, and Discs, North-Holland Publishing Co., Amsterdam, 1972. (See Section 8.3.5, pp. 350-356 for comments on what happens to the limit load when equations of equilibrium are referred to deformed state. See pp. 24-36 concerning limit theorems.)
- A-5. Hodge, P. G. Jr., Limit Analysis of Rotationally Symmetric Plates and Shells, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1961.
- A-6. Massonnett, C. E.; Olszak, W.; and Phillips, A., "Plasticity in Structural Engineering. Fundamentals and Applications," International Centre for Mechanical Sciences, Udine, Italy, CISM No. 241, Springer Verlag, 1979. (See pp. 50-55 concerning rigid, perfectly plastic bodies and influence on geometry changes.)
- A-7. Kachanov, L. M., <u>Foundations of the Theory of Plasticity</u>, North-Holland Publishing Co., Amsterdam, 1971.
- A-8. Mendelson, A., <u>Plasticity: Theory and Application</u>, McMillan Co., New York, 1970. (For rigid-plastic model, see pp. 16-20; for limit theorems, see pp. 312-317.)
- A-9. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, 1979, pp. 38-45.
- A-10. Calladine, C. R., Engineering Plasticity, Pergamon Press, 1969, pp. 55-58.
- A-11. Course Notes, "Low Velocity Impact Engineering," given by Computational Mechanics Associates, Baltimore, MD, 22-26 Jul 1985.

REFERENCES (Cont.)

- A-12. Lintholm, U. S. and Bessey, R. L., <u>Elastic-Viscoplastic Response of Clamped Beams Under Uniformly Distributed Impulse</u>, Technical Report AFML-TR-68-396, Jan 1969.
- A-13. Hodge, P. G. Jr., Impact Pressure Loading of Rigid-Plastic Cylindrical Shells, Polytechnic Institute of Brooklyn, PIBAL Report No. 255, May 1954.
- A-14. Hodge, P. G. Jr., "Impact Pressure Loading of Rigid-Plastic Cylindrical Shells," Journal of the Mechanics and Physics of Solids, Vol. 3, 1955, pp. 176-188.

APPENDIX B

CASE A - SHORT SHELLS, LOW LOADING

$$\left(1+\frac{2}{c^2} \le p \le 1+\frac{6}{c^2}\right)$$

$$\left(0 < c^2 \leq 6\right)$$

SHORT SHELLS, LOW LOADING,
$$1 + \frac{2}{c^2} \le p \le 1 + \frac{6}{c^2}$$
 WITH $c^2 > 0$

In this section, we show the relevant stress resultants m_{χ} and n_{φ} , displacement, velocity, and acceleration (w, w, w), as well as displacement at rest w(x, τ_{0}), and time to come to rest τ_{0} in Tables B-1 and B-2. Figure B-1 displays the kinematic assumption with regard to the velocity field. The analysis proceeds as follows.

The non-dimensional collapse load \mathbf{p}_{o} was derived by Hodge in Reference B-1. It is defined as

$$p_0 = 1 + \frac{2}{c^2}$$
 (B-1)

We must solve (Equation A-11 of Appendix A)

$$\frac{1}{2c^2} m_{x}^{"} + n_{\phi} + p - \ddot{w} = 0$$
 (B-2)

subject to initial, boundary, and jump conditions for

$$p > p_0 > 0 \tag{B-3}$$

and p = 0.

Equation (B-2) must be solved in two time intervals.

1. For
$$0 \le \tau \le 1$$
, when $p \ne 0$ and

2. For
$$1 \le \tau \le \tau_0$$
, when $p = 0$,

where τ_{o} represents the time at which the shell comes to rest.

SOLUTION FOR TIME INTERVAL $0 \le \tau \le 1$, (p $\ne 0$)

Referring to Figure A-3, assume we are on the AB side of the Tresca square. Using Table A-1, this translates to the following requirements for the two resultants and velocity

$$n_{b} = -1 \tag{B-4}$$

$$-1 \leq m_{x} \leq 1 \tag{B-5}$$

$$\dot{\mathbf{w}}^{"} = 0 \tag{B-6}$$

$$\dot{\mathbf{w}} \geq 0 \tag{B-7}$$

Since $\dot{\mathbf{w}}^*$ = 0, the velocity profile can only be linear in x. Since we have two initial conditions (zero displacement and velocity at time τ = 0) we assume a displacement profile of the form (linear in distance from ring stiffener)

$$w(x, \tau) = x [A_0 + A_1^{\tau} + A_2^{\tau^2}]$$
 (B-8)

with
$$\dot{w} = x[A_1 + 2A_2^{\tau}]$$
 (B-9)

$$\ddot{\mathbf{w}} = 2\mathbf{A}_2\mathbf{x} \tag{B-10}$$

But

$$\mathbf{w}(\mathbf{x},\mathbf{o}) = 0 \tag{B-11}$$

implies

$$A_{o} = 0 (B-12)$$

and
$$\dot{\mathbf{w}}(\mathbf{x},\mathbf{o}) = 0$$
 (B-13)

implies

$$A_1 = 0 ag{B-14}$$

Therefore,

$$w(x, \tau) = xA_2\tau^2$$
 (B-15)

where A_2 is not a function of time or distance but a function of the load level, i.e.,

$$A_2 = A_2(p) \tag{B-16}$$

Also, in view of $\dot{\mathbf{w}} \geq 0$

$$A_2 \ge 0 \tag{B-17}$$

We now replace n_ϕ = -1 and w = $xA_2\tau^2$ in the equilibrium equation, and solve for m_x

$$m_x^n + 2c^2(p-1) - 4c^2xA_2 = 0$$
 (B-18)

$$m_x'' = 4c^2 A_2 x - 2c^2 (p-1)$$
 (B-19)

Integrating once

$$m_x' = 2c^2 A_2 x^2 - 2c^2 (p-1)x + B_1$$
 (B-20)

But at x = 1, $m_{\bar{x}}(1,\tau) = 0$, i.e.,

$$B_1 = -2c^2A_2 + 2c^2(p-1)$$
 (B-21)

$$m_x' = 2c^2 A_2(x^2-1) + 2c^2(p-1)(1-x)$$
 (B-22)

Integrating again,

$$m_{x} = 2c^{2}A_{2}(\frac{1}{3}x^{3}-x) + 2c^{2}(p-1)(x - \frac{1}{2}x^{2}) + D_{1} =$$

$$\frac{2}{3}c^{2}A_{2}x^{3} - c^{2}(p-1)x^{2} + 2c^{2}(p-1-A_{2})x + D_{1}$$
(B-23)

At the end support (x = 0), $m_x = -1$

This defines

$$D_1 = -1 \tag{B-24}$$

Thus,

$$m_x = \frac{2}{3}c^2A_2x^3 - c^2(p-1)x^2 + 2c^2(p-1-A_2)x - 1$$
 (B-25)

At the middle (x = 1), $m_x = 1$.

This determines that

$$A_2 = \frac{3}{4}(p-1) - \frac{3}{2c^2}$$
 (B-26)

and, finally, the bending moment profile assumes the form

$$\mathbf{m}_{\mathbf{x}} = \left[\frac{c^2}{2}(p-1) - 1\right]\mathbf{x}^3 - c^2(p-1)\mathbf{x}^2 + \left[\frac{c^2}{2}(p-1) + 3\right]\mathbf{x} - 1$$
 (B-27)

and the displacement w becomes

$$w = \frac{3}{2c^2} \left[\frac{c^2}{2} (p-1) - 1 \right] x \tau^2$$
 (B-28)

while the velocity w is

$$\dot{w} = \frac{3}{2c^2} \left[c^2(p-1) - 2 \right] x\tau \tag{B-29}$$

Now we must require that $|\mathbf{m_x}| \leq 1$ everywhere. We obtain the first and second derivatives of $\mathbf{m_x}$. They are

$$\frac{\partial m_x}{\partial x} = 3 \left[\frac{c^2}{2} (p-1) - 1 \right] x^2 - 2c^2 (p-1)x + \left\{ \frac{c^2}{2} (p-1) + 3 \right\}$$
 (B-30)

$$\frac{\partial^2 m}{\partial x^2} = 6 \left[\frac{c^2}{2} (p-1) - 1 \right] x - 2c^2 (p-1)$$
 (B-31)

We observe that one of the roots of Equation (B-30) is $x_1 = 1$ (midpoint). The other root is

$$x_{2} = \frac{\left[3 + \frac{c^{2}}{2}(p-1)\right]}{3\left[\frac{c^{2}}{2}(p-1) - 1\right]} = \frac{1}{3}\left[1 + \frac{4}{\left(\frac{c^{2}}{2}(p-1) - 1\right)}\right]$$
(B-32)

which is a positive quantity since

$$p > p_0 = 1 + \frac{2}{c^2}$$
. As p approaches p_0 (from the right), $x_2 + \infty$.

This means that if we choose this root (x_2) to exceed or equal 1, in the interval

$$0 \le x \le 1$$

Equation (B-30) will always be non-negative, i.e.,

$$\frac{1}{3} \left[1 + \frac{4}{\left[\frac{c^2}{2} (p-1) - 1 \right]} \right] \ge 1$$

$$p \le 1 + \frac{6}{c^2}$$
(B-33)

We need to examine later the sign of the second derivative, Equation (B-31), to determine whether the yield condition will be violated. We started the analysis based on the fact that for plastic deformations to take place

$$p > p_0 = 1 + \frac{2}{c^2}$$
 (B-34)

This means that
$$\frac{c^2}{2}(p-1) - 1 \ge 0$$
 (B-35)

This also means that p - 1 > 0

At the left end (ring support), x = 0

$$\frac{\partial^2 m}{\partial x^2} = -2c^2(p-1) < 0$$
(B-36)

At the center (x = 1)

$$\frac{\partial^2 m_x}{\partial x^2} = 6 \left[\frac{c^2}{2} (p-1) - 1 \right] - 2c^2 (p-1) = c^2 (p-1) - 6$$
(B-37)

Since
$$\frac{c^2}{2}$$
 (p-1) - 1 > 0 (B-38)

$$c^2(p-1) > 2$$
 (B-39)

Set
$$c^2(p-1) = 2 + \epsilon$$
 (B-40)

where $\varepsilon > 0$

Then

$$\frac{\partial^2 \mathbf{m}}{\partial \mathbf{x}^2} = -4 + \varepsilon \tag{B-41}$$

At the two end points, the second derivative varies from $-4 - 2\varepsilon$ (which is always negative), to $-4 + \varepsilon$. The function m will have a maximum if its first derivative vanishes and its second derivative is negative or zero.

We must have

$$\frac{\partial^2 m}{\partial x^2} = 6 \left[\frac{c^2}{2} (p-1) - 1 \right] x - 2c^2 (p-1) \le 0$$
 (B-42)

or
$$x \le \frac{c^2(p-1)}{3\left[\frac{c^2}{2}(p-1) - 1\right]}$$
 (B-43)

for all $0 \le x \le 1$.

At
$$x = 1$$
 $-4 + \varepsilon \le 0$ (B-44)

or
$$c^2 (p-1) = 2 + \epsilon \le 6$$
 (B-46)

or
$$p \le 1 + \frac{6}{c^2}$$
 (B-47)

At the lowest possible load $p = p_0 = 1 + \frac{2}{c^2}$ the moment resultant m_x assumes the form

$$m_{x}^{lower}(x,\tau) = -2x^{2} + 4x - 1$$
 (B-48)

while at the upper possible load (without violating the yield surface)

$$p = 1 + \frac{6}{c^2}$$
 (B-49)

$$m_{x}^{upper}(x,\tau) = 2x^{3} - 6x^{2} + 6x - 1$$
 (B-50)

Table B-1 summarizes the obtained results so far.

SOLUTION FOR TIME INTERVAL $1 \le \tau \le \tau_0$, (p = 0)

At time τ = 1 the pressure ceases acting (p = 0). There is an acting acceleration, velocity, and displacement. They must match with the solution in this range. Therefore, at τ = 1

$$\ddot{w}$$
 (x,1) = $\left\{\frac{3}{2}$ (p-1) - $\frac{3}{c^2}\right\}_{p=0}$ x =

$$-\left[\frac{3}{2} + \frac{3}{c^2}\right] x = -\frac{3}{c^2} \left[\frac{c^2}{2} + 1\right] x$$
 (B-51)

Furthermore, the moment resultant with p = 0 becomes

$$m_{x}(x,1) = -\left[\frac{c^{2}}{2} + 1\right]x^{3} + c^{2}x^{2} + \left[3 - \frac{c^{2}}{2}\right]x - 1$$
 (B-52)

Assuming the range AB on the yield surface,

$$\dot{\mathbf{w}}^{"} = 0 \tag{B-53}$$

$$\dot{\mathbf{w}} \geq \mathbf{0} \tag{B-54}$$

to follow normality requirements. This means that the velocity profile must be linear in x (\dot{w} " = 0).

Assume

$$w(x,\tau) = x[B_0 + B_1^{\tau} + B_2^{\tau^2}]$$
 (B-55)

Then

$$\dot{w} = x[B_1 + 2B_2\tau]$$
 (B-56)

$$\ddot{\mathbf{w}} = 2 B_{\mathbf{y}} \mathbf{x} \tag{B-57}$$

But from Equation (B-51)

$$B_2 = -\frac{3}{2c^2} \left[\frac{c^2}{2} + 1 \right] \tag{B-58}$$

and

$$\ddot{\mathbf{w}} = -\frac{3}{c^2} \left[\frac{c^2}{2} + 1 \right] \mathbf{x}$$

(B-59)

Therefore,

$$\dot{w} = x \left[B_1 - \frac{3}{c^2} \left(\frac{c^2}{2} + 1 \right) \tau \right]$$
 (B-60)

Again, using normality ($\dot{\mathbf{w}} \geq 0$)

$$B_1 \ge \frac{3}{c^2} \left[\frac{c^2}{2} + 1 \right] \tag{B-61}$$

Furthermore,

$$p \ge 1 + \frac{c^2}{2} \tag{B-62}$$

and, hence,

$$B_1 \ge \frac{3}{2} p \tag{B-63}$$

Taking the lowest value of B₁ for which normality is satisfied,

$$\dot{\mathbf{w}} = \mathbf{x} \left[\frac{3}{2} \mathbf{p} - \frac{3}{c^2} \left(\frac{c^2}{2} + 1 \right) \tau \right]$$
 (B-64)

Therefore,

$$\dot{\mathbf{w}} \ge 0 \tag{B-65}$$

gives

$$\frac{3}{2}p - \frac{3}{2}\left(\frac{c^2}{2} + 1\right)\tau \ge 0 \tag{B-66}$$

or

$$\tau \ge \frac{c^2}{c^2 + 2} p = \frac{p}{p_0}$$
 (B-67)

When time τ becomes τ_0 , velocity is zero if the shell comes to rest.

Consequently, $\tau = \tau_0 = \frac{p}{p_0}$

Also,

$$w = x \left[B_o + \frac{3}{2} p\tau - \frac{3}{2c^2} \left(\frac{c^2}{2} + 1 \right) \tau^2 \right]$$
 (B-68)

Since displacements must match for time $\tau = 1$

$$\frac{3}{2c^2} \left[\frac{c^2}{2} (p-1) - 1 \right] x = x \left[B_0 + \frac{3}{2}p - \frac{3}{2c^2} \left(\frac{c^2}{2} + 1 \right) \right]$$
 (B-69)

yielding

$$B_{O} = -\frac{3}{4}p \tag{B-70}$$

and

$$w = x \left[-\frac{3}{2c^2} \left(\frac{c^2}{2} + 1 \right) \tau^2 + \frac{3}{2} p \tau - \frac{3}{4} p \right]$$
 (B-71)

The displacement at time $\tau = \tau_0$ can be calculated by substituting the value of τ_0 . Hence,

$$w (x,\tau_0) = \frac{px}{\left(1 + \frac{2}{c^2}\right)^2} \left[\frac{3}{2} \left(\frac{1}{2} + \frac{1}{c^2} \right) p - \frac{3}{4} \left(1 + \frac{2}{c^2} \right)^2 \right]$$
(B-72)

We must solve again

$$\frac{1}{2c^2} m_{x}^{"} + n_{\phi} + p - \ddot{w} = 0$$
 (B-73)

with
$$p = 0$$
, $n_{\phi} = -1$ and $\ddot{w} = -\frac{3}{c^2} \left[\frac{c^2}{2} + 1 \right] x$ (B-74)

$$\frac{1}{2c^2} m_{x}'' = -\frac{3}{c^2} \left[\frac{c^2}{2} + 1 \right] x + 1 \tag{B-75}$$

$$\mathbf{m}_{\mathbf{x}}^{n} = -6\left[\frac{c^{2}}{2} + 1\right]\mathbf{x} + 2c^{2}$$
 (B-76)

Integrating

$$m_{x}' = -3\left[\frac{c^{2}}{2} + 1\right]x^{2} + 2c^{2}x + E_{1}$$
 (B-77)

However, this must match the solution of time τ = 1, i.e.,

$$m_{x}'(x,1) = -3\left[\frac{c^{2}}{2} + 1\right]x^{2} + 2c^{2}x + E_{1} =$$

$$-3\left[\frac{c^2}{2}+1\right]x^2+2c^2x+\left[3-\frac{c^2}{2}\right]$$
 (B-78)

Hence,

$$E_1 = 3 - \frac{c^2}{2} \tag{B-79}$$

Integrating again

$$m_x = -\left[\frac{c^2}{2} + 1\right]x^3 + c^2x^2 + \left[3 - \frac{c^2}{2}\right]x + E_2$$
 (B-80)

This must match the solution at time τ = 1, i.e., E_2 = - 1

Therefore,

$$\mathbf{m}_{\mathbf{x}} = -\left[\frac{c^2}{2} + 1\right]\mathbf{x}^3 + c^2\mathbf{x}^2 + \left[3 - \frac{c^2}{2}\right]\mathbf{x} - 1 \tag{B-81}$$

We observe again that

$$\mathbf{m}_{\mathbf{y}}(0,\tau) = -1$$
 (B-82)

$$m_{\psi}(1,\tau) = 1$$
 (B-83)

Again the yield condition must not be violated along any portion, which means that $-1 \le m_x \le 1$. The moment resultant is an increasing function from x = 0 to x = 1 and, for it to stay that way without exceeding the maximum absolute value of 1, the first derivative must be non-negative in the x range (0,1). Furthermore, near x = 1, the second derivative must be non-positive for an increasing function.

The first condition is

$$\frac{\partial m_{x}}{\partial x} = -3\left[\frac{c^{2}}{2} + 1\right] \left\{ x^{3} - \frac{2c^{2}}{3\left(\frac{c^{2}}{2} + 1\right)}x - \frac{\left(3 - \frac{c^{2}}{2}\right)}{3\left(1 + \frac{c^{2}}{2}\right)} \right\} \ge 0$$
(B-84)

Since

$$1 + \frac{c^2}{2} > 0 ag{B-85}$$

the quantity in curly brackets must be non-positive. For this to be so, the value of x must lie within the range of the two roots of the quadratic. Since by inspection one of them is $x_1 = 1$, the other must necessarily be

$$x_2 = -\frac{\left[3 - \frac{c^2}{2}\right]}{3\left[1 + \frac{c^2}{2}\right]}$$
 (B-86)

Now x will always be in the non-negative range $0 \le x \le 1$, which means that if we make x_2 negative or zero, x will always satisfy

$$\frac{\partial \mathbf{m}_{\mathbf{x}}}{\partial \mathbf{x}} \geq 0.$$

Therefore,

$$x_2 = -\frac{\left[3 - \frac{c^2}{2}\right]}{3\left[1 + \frac{c^2}{2}\right]} \le 0$$
 (B-87)

gives
$$c^2 \leq 6$$
 (B-88)

The second condition is always satisfied for points $x = 1 - \delta$ (when $1 > \delta \ge 0$, and δ is a small quantity)

$$\frac{\partial^2 \mathbf{m}}{\partial \mathbf{x}^2} = -6 \left[\frac{\mathbf{c}^2}{2} + 1 \right] (1 - 6) + 2\mathbf{c}^2 \le 0$$
 (B-89)

or when

$$\delta \le \frac{3 + \frac{1}{2} c^2}{3 \left[1 + \frac{1}{2} c^2 \right]}$$
 (B-90)

For small c^2 (which is the current case), δ must be less than 1 (as assumed).

Finally, Figure B-1 summarizes the velocity profiles for this case, and Table B-2 summarizes the used quantities.

FIGURE B-1. VELOCITY PROFILES FOR SHORT SHELLS ($c^2 < 6$), LOW LOADING $\left(1 + \frac{2}{c^2} \le p \le 1 + \frac{1}{c^2}\right)$

TABLE B-1. SUMMARY, SHORT SHELLS, LOW LOADING, 1

	SHELL TYPE	PRESSURE LOADING TYPE			
TYPE	SHORT (0 < C ² < 6)	$LOW\left(1+\frac{2}{c^2}\leqslant p\leqslant 1+\frac{6}{c^2}\right)$			
CONDITIONS	0 ≤ τ ≤ 1				
MOMENT RESULTANT					
MEMBRANE RESULTANT	$n_{\varphi} = -1$				
DISPLACEMENT	PLACEMENT $w(x,\tau) = \frac{3}{2C^{2}} \left[\frac{C^{2}}{2} (p-1) - 1 \right] x \tau^{2}$				
VELOCITY	$\dot{w}(x,\tau) = \frac{3}{2C^2} \left[C^2(p-1) - 2 \right] x\tau$				
ACCELERATION	ŵ (x,	$\tau = \frac{3}{2C^2} \left[C^2(p-1) - 2 \right] x$			
TIME TO		N/A			
DISPLACEMENT AT REST		IS NOT COME TO REST YET			

TABLE B-2. SUMMARY, SHORT SHELLS, LOW LOADING, 2

	SHELL TYPE	PRESSURE LOADING TYPE	
TYPE	SHORT (0 < C ² ≤ 6)	$LOW\left(1+\frac{2}{c^2} \le p \le 1+\frac{6}{c^2}\right)$	
CONDITIONS		$1 \leqslant \tau \leqslant \frac{p}{p_0}$	
MOMENT RESULTANT	$m_{x}(x,\tau) = -\left[\frac{c^{2}}{2} + 1\right]x^{3} + c^{2}x^{2} + \left[3 - \frac{c^{2}}{2}\right]x - 1$		
MEMBRANE RESULTANT	$n_{\varphi} = -1$		
DISPLACEMENT	$w(x, \tau) = \left[-\frac{3}{2C^2} \left(\frac{C^2}{2} + 1 \right) \tau^2 + \frac{3}{2} p \tau - \frac{3}{4} p \right] x$		
VELOCITY	$\dot{\mathbf{w}}(\mathbf{x},\tau) = \left[-\frac{3}{c^2} \left(\frac{c^2}{2} + 1 \right) \tau + \frac{3}{2} \mathbf{p} \right] \mathbf{x}$		
ACCELERATION	ATION $\tilde{w}(x,\tau) = -\frac{3}{c^2} \left(\frac{c^2}{2} + 1\right) x$		
TIME _{TO}	$\tau_{o} = \frac{p}{p_{o}} = \frac{c^{2}}{\left(c^{2} + 2\right)}p$		
DISPLACEMENT $w(x,\tau_0) = \frac{1}{(1-\tau_0)^{n-1}}$		$\frac{x}{\left(\frac{2}{c^2}\right)^2} \left[\frac{3}{2} \left(\frac{1}{2} + \frac{1}{c^2} \right) p - \frac{3}{4} \left(1 + \frac{2}{c^2} \right)^2 \right]$	

REFERENCE--APPENDIX B

B-1. Hodge, P. G. Jr., The Rigid-Plastic Analysis of Symmetrically Loaded Closed Cylindrical Shells, Polytechnic Institute of Brooklyn, PIBAL Report No. 246, Mar 1954.

APPENDIX C

CASE B - LONG SHELLS, LOW LOADING

$$\left(1 + \frac{2}{c^2} \le p \le 1 + \frac{6}{c^2}\right)$$

$$\left(c^2 > 6\right)$$

LONG SHELLS, LOW LOADING,
$$\left(1 + \frac{2}{c^2} \le p \le 1 + \frac{6}{c^2}\right)$$
 WITH $c^2 > 0$

Figure C-1 displays the assumed kinematics for the velocity distribution for times $0 \le \tau \le 1$ and $1 \le \tau \le \tau_0$. Tables C-1 through C-5 summarize the results we are about to obtain. Observe that there are two intervals of interest, depending on whether $0 \le \tau \le 1$ and $1 \le \tau \le \tau_0$. Furthermore, the last interval is subdivided depending on whether the point of interest x is to the left $(0 \le x \le u)$ or to the right $(u < x \le 1)$ of the travelling hinge.

When the pressure loading is restricted in the range

$$1 + \frac{2}{c^2} \le p \le 1 + \frac{6}{c^2} \tag{C-1}$$

the moment resultant $m_{_{X}}$ of the previous analysis [Equation (B-27)] for $o \le \tau \le 1$ does not violate the yield surface requirements $-1 \le m_{_{X}} \le 1$. In the second range, however $(1 \le \tau \le \tau_{_{0}})$ [Equation (B-81)], when $c^2 > 6$, we obtain, setting $c^2 = 6 + \epsilon$ and $\epsilon > 0$ and ϵ being small

$$\mathbf{m}_{\mathbf{x}}(\mathbf{x},\tau) = \left[4 + \frac{\varepsilon}{2}\right]\mathbf{x}^3 + (6+\varepsilon)\mathbf{x}^2 - \frac{\varepsilon}{2}\mathbf{x} - 1 \tag{C-2}$$

It is quite obvious that if $x = \frac{1}{3} \frac{\varepsilon}{(8+\varepsilon)}$ (i.e., near a point where $x \to +0$), the yield condition is violated since

$$\mathbf{m}_{\mathbf{x}}\left(\frac{1}{3}\frac{\varepsilon}{(8+\varepsilon)},\tau\right) = -\frac{\left[4\varepsilon^{3} + 90\varepsilon^{2} + 864\varepsilon + 3456\right]}{54\left[8+\varepsilon\right]^{2}} \le -1$$
(C-3)

Table C-1 summarizes the result for $0 \le \tau \le 1$. We just observed that when $c^2 > 6$, the yield condition is violated near x = +0.

Consider the possibility of two regions on the yield surface:

- 1. Region AD for point x such that $0 \le x \le u$
- 2. Region AB for point x such that $u < x \le 1$

where u is the point along the shell's length where the regions change. It actually represents the position where a hinge circle develops.

REGION AD

The hinge in question is travelling because it changes position with time. Its initial location must be at the ring support at time τ = 1. Along AD, the strain rate vector must satisfy

2.
$$\dot{\mathbf{w}}^{-} = 0$$
 (C-5)

3.
$$u_{x} = -1$$
 (C-6)

and equilibrium

$$\frac{1}{2c^2} m_{x}^{"} + n_{\phi} + p - \ddot{w} = 0 \tag{C-7}$$

(See Figure A-3.)

Since $\dot{w} = \ddot{w} = 0$ and at time $\tau = 1$ the pressure has ceased acting (p = 0)

$$\mathbf{n}_{b} = 0 \tag{C-8}$$

and

$$\mathbf{w} = \mathbf{c}_1 \tag{C-9}$$

The deformation is rigid plastic for 0 < x < u. This means that all points 0 < x < u have no motion for $1 \le \tau \le \tau_0$, i.e., they do not deform further than the deformation they acquired at time τ = 1, which is

$$w(x,1) = \frac{3}{2c^2} \left[\frac{c^2}{2} (p-1) - 1 \right] x$$
 (C-10)

REGION AB FOR $u < x \le 1$

The conditions the strain rate must satisfy are

$$\dot{\mathbf{w}}^{-} = 0 \tag{C-11}$$

$$\ddot{\mathbf{w}} \geq 0 \tag{C-12}$$

$$n_{\phi} = -1 \tag{C-13}$$

where

$$-1 \leq m_x \leq 1$$

while equilibrium gives:

$$\frac{1}{2c^2} m_{x}^{w} + n_{\phi} + p - \ddot{w} = 0$$
 (C-14)

Since the second derivative of the velocity with respect to position must vanish it must be, at the most, linear in distance. Assume, therefore,

$$\dot{\mathbf{w}} = \dot{\mathbf{A}} \mathbf{x} + \dot{\mathbf{B}} \tag{C-15}$$

and

$$\ddot{\mathbf{w}} = \ddot{\mathbf{A}} \mathbf{x} + \ddot{\mathbf{B}} \tag{C-16}$$

Replacing Equation (C-16) in the equilibrium Equation (C-14) and setting p = 0, we have

$$\frac{1}{2c^2} \, \mathbf{m}_{\mathbf{x}}^{"} - 1 - (\ddot{\mathbf{A}} \, \mathbf{x} + \ddot{\mathbf{B}}) = 0 \tag{C-17}$$

Integrating once

$$\mathbf{m}_{\mathbf{x}}' = 2c^2\mathbf{x} + 2c^2\left(\frac{1}{3}\ddot{\mathbf{a}} \ \mathbf{x}^2 + \ddot{\mathbf{b}}\mathbf{x}\right) + c_1$$
 (C-18)

Integrating again

$$m_x = c^2 x^2 + c^2 \left[\frac{1}{3} \ddot{x} x^3 + \ddot{x} x^2 \right] + c_1 x + c_2$$
 (C-19)

At the two ends x = u and x = 1 the moment resultant becomes -1 and 1, respectively.

$$m_x = c^2 x^2 + c^2 \left[\frac{1}{3} \ddot{x} x^3 + \ddot{y} x^2 \right] + c_1 x + c_2$$
 (C-20)

At x = u $m_x = -1$. Therefore,

$$c^{2} \left[\frac{1}{3} \ddot{a} u^{3} + (1 + \ddot{b}) u^{2} \right] + c_{1} u + c_{2} = -1$$
 (C-21)

Continuity of shearing force $\begin{pmatrix} m_x^1 = 0 \end{pmatrix}$ at x = u yields

$$m_{x}^{*}(u) = c^{2} \left[\ddot{A} u^{2} + 2(1 + \ddot{B}) u \right] + c_{1} = 0$$
 (C-22)

At the middle (x = 1) we must have

$$m_{\psi}(1) = 1$$
 (C-23)

$$\mathbf{m}_{\mathbf{x}}^{\bullet}(1) = 0 \tag{C-24}$$

i.e.

$$c^{2}[\ddot{A} + 2(1 + \ddot{B})] + c_{1} = 0$$
 (C-25)

$$c^{2}\left[\frac{1}{3}\ddot{A} + (1 + \ddot{B})\right] + c_{1} + c_{2} = 1$$
 (C-26)

OT

$$c_1 = -c^2[\ddot{A} + 2(1 + \ddot{B})]$$
 (C-27)

and

$$c_2 = 1 + c^2 \left[\frac{2}{3}\ddot{A} + (1 + \ddot{B}) \right]$$
 (C-28)

Substituting Equation (C-27) for c_1 in Equation (C-22) we get

$$\ddot{A} = -2(1 + \ddot{B}) \frac{(u-1)}{(u^2-1)} = -2(1 + \ddot{B}) \frac{1}{(1+u)}$$
 for $u \neq 1$ (C-29)

Substituting c_1 and c_2 in Equations (C-21) and (C-22) we get

$$\frac{c^{2}(u-1)(u^{2}+u-2)}{3}\ddot{A}+c^{2}(1+\ddot{B})(u^{2}-2u+1)=-2$$
 (C-30)

However, from Equation (C-29)

$$1 + \ddot{B} = -\frac{1}{2}(u + 1)\ddot{A}$$
 (C-31)

and after algebra we obtain

$$\ddot{A} = -\frac{12}{c^2} \frac{1}{(1-u)^3}$$
 (C-32)

$$1 + \ddot{B} = \frac{6}{c^2} \frac{(u+1)}{(1-u)^3}$$
 (C-33)

This, in turn, defines c_1 and c_2 from Equations (C-27) and (C-28). They are

$$c_1 = -\frac{12}{(1-u)^3}u \tag{C-34}$$

$$c_2 = 1 - \frac{2(1-3u)}{(1-u)^3}$$
 (C-35)

The two solutions [Equation (C-15)] in the intervals 0 < x < u and u < x < 1 must have continuous velocities at x = u, i.e.,

$$\dot{\mathbf{w}} = \dot{\mathbf{A}}(\tau) \mathbf{u} + \dot{\mathbf{B}}(\tau) = 0 \tag{C-36}$$

Differentiating Equation (C-36) again with respect to time we obtain

$$\ddot{A} u + \dot{A} \dot{u} + \ddot{B} = 0 \tag{C-37}$$

or

$$\dot{A} \dot{u} = -(\ddot{A} u + \ddot{B}) = \frac{6}{c^2} \left[\frac{c^2}{6} - \frac{1}{(1-u)^2} \right]$$
 (C-38)

or

$$\dot{A} = \frac{1}{\dot{u}} - \frac{6}{c^2} \frac{1}{\dot{u}(1-u)^2}$$
 (C-39)

Differentiating Equation (C-39) with respect to time we get

$$\ddot{A} = -\frac{\ddot{u}}{\dot{u}^2} + \frac{6}{c^2} \frac{-(\dot{u}(1-u)^2)^*}{[\dot{u}(1-u)^2]^2} = -\frac{\ddot{u}}{\dot{u}^2} + \frac{6}{c^2} \frac{\dot{u}}{\dot{u}^2(1-u)^2} - \frac{12}{c^2} \frac{1}{(1-u)^3}$$
 (C-40)

We already obtained [Equation (C-32)] that

$$\ddot{A} = -\frac{12}{c^2} \frac{1}{(1-u)^3}$$
 (C-41)

Equating the two, we obtain the following differential equation

$$\frac{\ddot{u}}{\dot{u}^2} \left[\frac{6}{c^2} \frac{1}{(1-u)^2} - 1 \right] = 0 \tag{C-42}$$

Since

$$\dot{A} = \frac{6}{u^2} \left[\frac{c^2}{6} - \frac{1}{(1-u)^2} \right] \frac{1}{\dot{u}} \neq 0$$
 (C-43)

we must necessarily have

$$\frac{\ddot{\mathbf{u}}}{\dot{\mathbf{u}}} = \mathbf{0} \tag{C-44}$$

or

$$\ddot{\mathbf{u}} = \mathbf{0} \tag{C-45}$$

and

$$\dot{\mathbf{u}} \neq \mathbf{0} \tag{C-46}$$

This means that the location of the hinge circle is linear in time, τ

$$\mathbf{u} = \mathbf{E}_1 \ \tau + \mathbf{E}_2 \tag{C-47}$$

$$\dot{\mathbf{u}} = \mathbf{E}_1 \tag{C-48}$$

$$\ddot{\mathbf{u}} = \mathbf{0} \tag{C-49}$$

Velocities must match at time τ = 1. [See Equations (C-36) and (B-29).] Therefore,

$$\dot{\mathbf{w}}(1) = \left\{ \frac{3}{c^2} \left[\frac{c^2}{2} (\mathbf{p} - 1) - 1 \right] \tau \mathbf{x} \right\} = \dot{\mathbf{A}}(1) \mathbf{x} + \dot{\mathbf{B}}(1)$$

$$\tau = 1$$
(C-50)

i.e., we get two initial conditions for A, B

$$\frac{3}{c^2} \left[\frac{c^2}{2} (p-1) - 1 \right] = \dot{A}(1) \tag{C-51}$$

$$0 = \dot{B}(1)$$
 (C-52)

From Equation (C-36)

$$\dot{B} = - \dot{A}u \tag{C-53}$$

and from Equation (C-43)

$$\dot{A} = \frac{6}{c^2} \left[\frac{c^2}{6} - \frac{1}{(1-u)^2} \right] \frac{1}{\dot{u}}$$
 (C-54)

Therefore, by Equation (C-50)

$$\left\{ \frac{6}{c^2} \left[\frac{c^2}{6} - \frac{1}{(1-u)^2} \right] \frac{1}{\dot{u}} \right\}_{\tau=1} = \frac{3}{c^2} \left[\frac{c^2}{2} (p-1) - 1 \right]$$
 (C-55)

with

$$\mathbf{u}(\tau) = \mathbf{E}_{1}^{\tau} + \mathbf{E}_{2} \tag{C-56}$$

$$\dot{\mathbf{u}}(\tau) = \mathbf{E}_1 \tag{C-57}$$

and
$$u(1) = 0$$
 (C-58)

Equations (C-58) and (C-56) imply $E_2 = -E_1$, i.e.,

$$\mathbf{u}(\tau) = \mathbf{E}_{1}(\tau - 1) \tag{C-59}$$

$$\dot{\mathbf{u}} = \mathbf{E}_{1} \tag{C-60}$$

Replacing Equations (C-59) and (C-60) at time τ = 1 in Equation (C-55) we obtain

$$\frac{3}{c^2} \left[\frac{c^2}{2} (p-1) - 1 \right] = \frac{6}{c^2 \dot{u}(1)} \left[\frac{c^2}{6} - 1 \right]$$
 (C-61)

or

$$\dot{u}(1) = E_1 = \frac{(c^2 - 6)}{3\left[\frac{c^2}{2}(p-1) - 1\right]}$$
 (C-62)

$$u = \frac{(c^2 - 6)}{3\left[\frac{c^2}{2}(p-1) - 1\right]}(\tau - 1)$$
 (C-63)

Therefore, by Equation (C-53) the velocity field for u < x < 1 is

$$\dot{\mathbf{w}} = \dot{\mathbf{A}}(\tau)\mathbf{x} + \dot{\mathbf{B}}(\tau) = \dot{\mathbf{A}}(\tau)(\mathbf{x} - \mathbf{u}) \tag{C-64}$$

However, using Equations (C-54), (C-62), and (C-63)

$$\dot{\mathbf{w}}(\tau) = \frac{6}{c^2} \frac{1}{\dot{\mathbf{u}}} \left[\frac{c^2}{6} - \frac{1}{(1-\mathbf{u})^2} \right] (\mathbf{x} - \mathbf{u})$$
 (C-65)

where ù and u are given by Equations (C-62) and (C-63), respectively.

Replacing the values of c_1 , c_2 , \ddot{A} , and \ddot{B} in Equation (C-20) we obtain

$$m_{x}(x,\tau) = c^{2} \left[-\frac{4}{c^{2}} \frac{1}{(1-u)^{3}} x^{3} + \frac{6}{c^{2}} \frac{(1+u)}{(1-u)^{3}} x^{2} \right] -$$

$$\frac{12}{(1-u)^3} u x + 1 - \frac{2(1-3u)}{(1-u)^3} =$$

$$1 + \frac{1}{(1-u)^3} \left[-4x^3 + 6(1+u)x^2 - 12ux - 2(1-3u) \right]$$
 (C-66)

Also

$$n_{A} = -1 \tag{C-67}$$

$$1 \le \tau \le \tau_0 \tag{C-68}$$

Equation (C-66) yields

$$\mathbf{m}_{\mathbf{x}}(1,\tau) = 1 \tag{C-69}$$

$$m_{\chi}(u,\tau) = 1 + 2\frac{(u-1)^3}{(1-u)^3} = -1$$
 (C-70)

and

$$\dot{\mathbf{w}} \geq \mathbf{0} \tag{C-71}$$

$$\dot{\mathbf{w}}^{\mathsf{H}} = \mathbf{0} \tag{C-72}$$

Equation (C-71) implies

$$\frac{6}{c^2} \frac{1}{\dot{u}} \left[\frac{c^2}{6} - \frac{1}{(1-u)^2} \right] (x-u) \ge 0$$
 (C-73)

with u given by Equation (C-63) and, hence, u given by Equation (C-62)

$$\dot{u} = \frac{c^2 - 6}{3\left[\frac{c^2}{2}(p-1) - 1\right]}$$
 (C-74)

Since $\dot{u} \geq 0 \ \left(c^2 \geq 6\right)$, Equation (C-73) can be rewritten as

$$\frac{6}{c^2} \frac{(c^2-6)}{3\left[\frac{c^2}{2}(p-1)-1\right]} \left[\frac{c^2(1-u)^2-6}{6(1-u)^2}\right] (x-u) \ge 0$$
 (C-75)

This implies that

$$c^2(1-u)^2 - 6 \ge 0$$
 (C-76)

or

$$|1-\mathbf{u}| \ge \frac{\sqrt{6}}{\mathbf{c}} \tag{C-77}$$

Since $1 \ge u \ge 0$, Equation (B-77) reduces to

$$u \ge 1 - \frac{\sqrt{6}}{c} \tag{C-78}$$

At time τ = τ_0 (\geq 1) the motion stops

$$\dot{\mathbf{w}}(\mathbf{x}, \mathbf{\tau}_{\mathbf{o}}) = 0 \tag{C-79}$$

i.e.,

$$\dot{A}(\tau_{o})\left[x-u(\tau_{o})\right] = 0 \tag{C-80}$$

or since in general $x \neq u (\tau_o)$

$$\dot{A}(\tau_{Q}) = 0 \tag{C-81}$$

or by Equation (C-54)

$$\left(\frac{6}{c^2}\right) \frac{1}{\dot{u}\left(\tau_0\right)} \left[\frac{c^2}{6} - \frac{1}{\left[1-u\left(\tau_0\right)\right]^2}\right] = 0$$
 (C-82)

Since in general,
$$u(\tau_0) = \frac{(c^2-6)}{3\left[\frac{c^2}{2}(p-1)-1\right]} > 0$$

by Equation (C-82)

$$\frac{c^2}{6} - \frac{1}{\left[1 - u(\tau_0)\right]^2} = 0$$
 (C-83)

yielding

$$u(\tau_0) = 1 - \frac{\sqrt{6}}{c} \tag{C-84}$$

Replacing $\tau = \tau_0$ in Equation (C-63) and equating it to Equation (C-84), we solve for τ_0 from

$$1 - \frac{\sqrt{6}}{c} = \frac{1}{3} \frac{(c^2 - 6)}{\left[\frac{c^2}{2}(p-1) - 1\right]} (\tau_0 - 1)$$
 (C-85)

$$\tau_0 = 1 + \frac{3\left[\frac{c^2}{2}(p-1)-1\right]}{c (c+\sqrt{6})}$$
 (C-86)

or if we set

$$\alpha = \frac{(c^2-6)}{3\left[\frac{c^2}{2}(p-1)-1\right]}$$
 (C-87)

$$\tau_{o} = 1 + \frac{1}{\alpha} \left(1 - \frac{\sqrt{6}}{c} \right) \tag{C-88}$$

and Equation (C-65) for the velocity field can be rewritten as

$$\dot{\mathbf{w}} = \frac{6}{c^2} \left(\frac{1}{\alpha} \right) \left[\frac{c^2}{6} - \frac{1}{(1-u)^2} \right] (\mathbf{x} - \mathbf{u}) = \frac{6}{c^2} \left(\frac{1}{\alpha} \right) \left[\frac{c^2}{6} \left\{ \mathbf{x} - \alpha(\tau - 1) \right\} \right]$$

$$\left\{\frac{1}{\left[(1+\alpha)-\alpha\tau\right]} + \frac{(x-1)}{\left[(1+\alpha)-\alpha\tau\right]^2}\right\}$$
 (C-89)

Also observe that

$$1 - \alpha(\tau - 1) = \frac{\sqrt{6}}{c} \tag{C-90}$$

and

$$\frac{(\tau-1)}{[1-\alpha(\tau-1)]} = \frac{1}{\alpha} \left(\frac{c}{\sqrt{6}} - 1 \right) \tag{C-91}$$

and

$$\frac{\alpha}{2} \left(\tau^2 - 1 \right) = \frac{1}{2\alpha} \left[\left| \left(1 - \frac{\sqrt{6}}{c} \right) + \alpha \right|^2 - \alpha^2 \right] \qquad (C-92)$$

Integrating Equation (C-89) and applying the boundary condition that [Equation (B-28)]

$$w(x,1) = \frac{3}{2c^2} \left[\frac{c^2}{2} (p-1) - 1 \right] x$$
 (C-93)

we have

$$w(x,\tau) = \frac{3}{2c^2} \left[\frac{c^2}{2} (p-1) - 1 \right] x + \int_{\tau=1}^{\tau} \dot{w} d\tau$$
 (C-94)

Observing that (see Tables C-2 and C-3)

$$\frac{d}{d\tau} \left\{ -\frac{1}{\alpha} \log_e |(1+\alpha) - \alpha\tau| + \frac{(x-1)}{\alpha} \frac{1}{[1+\alpha - \alpha\tau]} \right\} = \frac{1}{[1+\alpha - \alpha\tau]} + \frac{(x-1)}{[1+\alpha - \alpha\tau]^2}$$
 (C-95)

Equation (C-94) becomes

$$w(x,\tau) = \frac{3}{2c^2} \left[\frac{c^2}{2} (p-1) - 1 \right] x + \frac{6}{c^2} \left(\frac{1}{\alpha} \right) \int_{\tau=1}^{\tau} \left\{ \frac{c^2}{6} [x - \alpha(\tau - 1)] - \frac{1}{2c^2} \right\} dt$$

$$\left[\frac{1}{[(1+\alpha)-\alpha\tau]} + \frac{(x-1)}{[(1+\alpha)-\alpha\tau]^2}\right] d\tau = \frac{3}{2c^2} \left[\frac{c^2}{2}(p-1)-1\right]x +$$

$$\frac{6}{c^2}\left(\frac{1}{\alpha}\right)\left\{\frac{c^2}{6}\left[(x+\alpha)(\tau-1)-\frac{\alpha}{2}(\tau^2-1)\right]+\right.$$

$$\left[\frac{1}{\alpha}\log_{e}\left|1-\alpha(\tau-1)\right| + \frac{(1-x)}{\alpha} \cdot \frac{\alpha(\tau-1)}{(1+\alpha-\alpha\tau)}\right]$$
 (C-96)

or using Equations (C-90), (C-91), and (C-92) the displacement at time τ_0 [i.e., when $w(x,\tau_0)$ = 0] becomes:

$$w(x,\tau_{o}) = \frac{3}{2c^{2}} \left[\frac{c^{2}}{2} (p-1) - 1 \right] x + \frac{1}{\alpha^{2}} \left\{ (x+\alpha) \left(1 - \frac{\sqrt{6}}{c} \right) - \frac{1}{2} \left[\left(1 - \frac{\sqrt{6}}{c} \right) + \alpha \right)^{2} - \alpha^{2} \right] \right\}$$

$$\frac{1}{\alpha^{2}} \left\{ \frac{6}{c^{2}} \left[\frac{1}{2} \log_{e} 6 - \log_{e} |c| \right] + (1-x) \left(\frac{\sqrt{6}}{c} - \frac{6}{c^{2}} \right) \right\}$$
(C-97)

Observe that x = u only at time $\tau = 1$. At that time, x = u = 0 and Equations (C-96) and (C-10) give the same answer.

Equation (C-96) can also be written in terms of u as follows:

$$w(x,\tau) = \frac{3}{2c^{2}} \left[\frac{c^{2}}{2} (p-1) - 1 \right] x + \frac{6}{c^{2}} \left(\frac{1}{\alpha} \right) \left[\frac{c^{2}}{6} \left| \frac{(x+\alpha)u}{\alpha} - \frac{(\tau+1)}{2} u \right| + \frac{1}{\alpha} \left| \log_{e} |1-u| + \frac{(1-x)u}{(1-u)} \right| \right]$$
(C-98)

The acceleration \ddot{w} is given by replacing Equations (C-32) and (C-33) in (C-16)

$$\ddot{\mathbf{w}} = \ddot{\mathbf{A}}\mathbf{x} + \ddot{\mathbf{B}} = \frac{6}{c^2} \frac{1}{(1-\mathbf{u})^3} [(1+\mathbf{u})-2\mathbf{x}] - 1$$
 (C-99)

If we further substitute u from Equation (C-63) we get

$$\psi(x,\tau) = \frac{6}{c^2} \frac{1}{[1+\alpha-\alpha\tau]^3} [1+\alpha(\tau-1)-2x] - 1$$
 (C-100)

Figure C-1 summarizes the velocity profiles employed for long shells (c² > 6) and low loading $\left(1+\frac{2}{c^2} \le p \le 1+\frac{6}{c^2}\right)$

Tables C-4 and C-5 are a summary of all the derived quantities for the same case.

NOTE: OBSERVE THAT WHEN $\tau \rightarrow 0$ u $\rightarrow 0$

FIGURE C-1. VELOCITY PROFILES FOR LONG SHELLS ($c^2 > 6$) AND LOW LOADING $\left(1 + \frac{2}{c^2} \le p \le 1 + \frac{6}{c^2}\right)$

TABLE C-1. SUMMARY, LONG SHELLS, LOW LOADING, 1

	TABLE CI. SUMMART, LUNG		
ТҮРЕ	SHELL TYPE	PRESSURE LOADING TYPE	
	LONG (C ² > 6)	$LOW\left(1+\frac{2}{c^2} \le p \le 1+\frac{6}{c^2}\right)$	
CONDITIONS		0 ≤ τ ≤ 1	
MOMENT RESULTANT	$m_{\chi}(x,\tau) = \left[\frac{C^2}{2}(p-1)\right]$	$m_{\chi}(x,\tau) = \left[\frac{C^2}{2}(p-1)-1\right] x^3 - C^2(p-1) x^2 + \left[\frac{C^2}{2}(p-1)+3\right] x - 1$	
MEMBRANE RESULTANT		n _{\varphi} = -1	
DISPLACEMENT	w (x, 1	$r = \frac{3}{2C^2} \left[\frac{C^2}{2} (p-1) - 1 \right] \times \tau^2$	
VELOCITY	ŵ (x,:	$r = \frac{3}{2c^2} \left[c^2 \left(p - 1 \right) - 2 \right] x r$	
ACCELERATION	₩(x,	$(\tau) = \frac{3}{2c^2} \left[c^2 (p-1) - 2 \right] x$	
TIME _{To}		N/A	
DISPLACEMENT AT REST	HAS	HAS NOT COME TO REST YET	

TABLE C-2. SUMMARY OF THE OBTAINED CONSTANTS

PARAMETER	EXPRESSION
C ₁	$-\frac{12}{(1-u)^3}u$
. c ₂	$1 - \frac{2(1 - 3u)}{(1 - u)^3}$
Ä(τ)	$-\frac{12}{c^2}\frac{1}{(1-u)^3}$
À(τ)	$\frac{6}{c^2} \frac{1}{u} \left[\frac{c^2}{6} - \frac{1}{(1-u)^2} \right]$
Β (τ)	$\frac{6}{c^2} \frac{(1+u)}{(1-u)^3} - 1$
Β (τ)	$-\frac{6}{C^2}\frac{u}{\dot{u}}\left[\frac{C^2}{6}-\frac{1}{(1-u)^2}\right]$
u(τ)	$\frac{(c^2-6)}{3\left[\frac{c^2}{2}(p-1)-1\right]} (\tau-1)$
ů(τ)	$\frac{(C^2 - 6)}{3\left[\frac{C^2}{2}(p - 1) - 1\right]}$

TABLE C.3. FUNCTIONS AND THEIR DERIVATIVES

(au is the only time variable. ${f x}$ is taken as a constant)

DERIVATIVE WITH RESPECT TO TIME VARIABLE $ au$ $\dot{\mathbf{f}}(au)$	$\frac{1}{(1+\alpha-\alpha\tau)} + \frac{(\kappa-1)}{(1+\alpha-\alpha\tau)^2}$	V _T (p - T)
FUNCTION F(7)	$-\frac{1}{\alpha}\log_{\theta} (1+\alpha)-\alpha\tau +\frac{(\varkappa-1)}{\alpha}\frac{1}{(1+\alpha-\alpha\tau)}$	$\frac{(2\tau - p)}{4} \sqrt{\tau(p - \tau)} + \frac{p^2}{8} \cos^{-1} \left\{ 1 - \frac{2}{p} \tau \right\}$ $for \ 1 - \frac{2}{p}\tau \leqslant 1$

TABLE C-4. SUMMARY, LONG SHELLS, LOW LOADING, 2

	SHELL TYPE	PRESSURE LOADING TYPE
ТҮРЕ	LONG $\left(c^2 > 6\right)$	$LOW \left(1 + \frac{2}{c^2} \le p \le 1 + \frac{6}{c^2}\right)$
CONDITIONS	$0 \leq x < u \qquad u = \alpha(\tau - 1) \alpha = \alpha$	$= \frac{(C^2 - 6)}{3\left[\frac{C^2}{2}(p - 1) - 1\right]}, 1 \le \tau \le \tau_0 \qquad (u \le 1 - \sqrt{\frac{6}{C}})$
MOMENT RESULTANT		m _x = -1
MEMBRANE RESULTANT		$n_{\varphi} = 0$
DISPLACEMENT	w	$= \frac{3}{2C^2} \left[\frac{C^2}{2} (p-1) - 1 \right] \times$
VELOCITY		ŵ = 0
ACCELERATION		₩ = 0
TIME _T		$\tau_0 = 1 + \frac{1}{\alpha} \left(1 - \frac{\sqrt{6}}{C} \right)$
DISPLACEMENT AT REST	$w(x,\tau_0) = \frac{3}{2C^2} \left[\frac{C^2}{2} \right]$	$(p-1)-1$ x FOR $0 \le x < \alpha \ (\tau_0-1)$

TABLE C-5. SUMMARY, LONG SHELLS, LOW LOADING, 3

_TYPE	SHELL TYPE	PRESSURE LOADING TYPE
	LONG $(c^2 > 6)$	$LOW \left(1 + \frac{2}{C^2} \leqslant p \leqslant 1 + \frac{6}{C^2}\right)$
CONDITIONS	$\alpha = \frac{(c^2 - 6)^2}{3[\frac{c^2}{2}(p - 1)]^2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
MOMENT RESULTANT	$m_{\chi}(x,\tau) = 1 + \frac{1}{(1 - 1)^{n}}$	$\frac{1}{u^3} \left[-4x^3 + 6(1+u)x^2 - 12ux - 2(1-3u) \right]$ where $u = \alpha(\tau - 1)$
MEMBRANE RESULTANT		n _φ = − 1
DISPLACEMENT	20 .	$1 \bigg] x + \frac{6}{c^2} \bigg(\frac{1}{\alpha} \bigg) \bigg\{ \frac{c^2}{6} \bigg[(x + \alpha) (\tau - 1) - \frac{\alpha}{2} (\tau^2 - 1) \big] + $ $-\alpha (\tau - 1) \big[+ \frac{(1 - x)}{\alpha} \cdot \frac{\alpha (\tau - 1)}{(1 + \alpha - \alpha \tau)} \bigg] \bigg\}$
VELOCITY	w(x,τ) =	$\frac{6}{C^2} \left(\frac{1}{\alpha}\right) \left[\frac{C^2}{6} - \frac{1}{(1-u)^2}\right] (x-u)$
ACCELERATION	w(χ, τ) =	$\left(\frac{6}{C^2}\right) \frac{\left[1+\alpha(\tau-1)-2\times\right]}{\left[1+\alpha-\alpha\tau\right]^3}-1$
TIME _T	τ _o = 1+	$\frac{\left[\frac{C^2}{2}(p-1)-1\right]}{C(C+\sqrt{6})}=1+\frac{1}{\alpha}\left(1-\frac{\sqrt{6}}{C}\right)$
DISPLACEMENT AT REST		$\frac{1}{\alpha^2} \left\{ (x + \alpha) \left(1 - \frac{\sqrt{6}}{C} \right) - \frac{1}{2} \left[\left\{ (1 - \frac{\sqrt{6}}{C} + \alpha)^2 - \alpha^2 \right] \right\} $ $\left[\frac{1}{2} \log_e C \right] + (1 - x) \left(\frac{\sqrt{6}}{C} - \frac{6}{C^2} \right) \right\}$

APPENDIX D

CASE C - SHORT SHELLS, HIGH LOADING

$$\left(p > 1 + \frac{6}{c^2}\right)$$

$$\left(0 < c^2 < 6\right)$$

$$\left(0 < c^2 < 6\right)$$

SHORT SHELLS, HIGH LOADING,
$$\left(p > 1 + \frac{6}{c^2}\right)$$
, $0 < c^2 \le 6$

Figure D-1 gives the assumed velocity profile, which will be justified in this section.

Tables D-1, D-2, D-4, D-5, D-6, D-7, and D-8 summarize the solution in all intervals. Tables D-4 and D-5 summarize the solution in the interval $1 \le \tau \le \tau'$, while Tables D-6, D-7, and D-8 for $\tau' \le \tau \le \tau_0$.

First, we observe that in view of Equation (B-42) or (B-47), the solution for short shells (portion AB on the yield surface) in the range $0 \le \tau \le 1$ cannot be used, as it predicts a moment resultant m_{χ} outside the (-1,1) range of the Tresca square.

From the point of view of time intervals, it turns out that we must consider three intervals:

- 1. STAGE 1 (0 \leq τ \leq 1) for times during which the excess pressure p is acting.
- 2. STAGE 2 (1 $\leq \tau \leq \tau'$) for times during which the pressure load has been removed (p = 0), but motion continues (w(τ') \neq 0), τ' will be defined there.

3. STAGE 3 $(\tau' \le \tau \le \tau_0)$ for times during which the pressure p has been removed (p = 0) and the shell comes to rest $(\dot{w}(\tau_0) = 0)$.

STAGE 1

We consider two regions as a possible assumed profile on the yield surface: (1) for points such that $0 \le x < u_0$ on AB (Figure A-3) and (2) for points such that $u_0 < x \le 1$ at corner A (Figure A-3). Other combinations were considered and eliminated by Hodge. D-1,D-2 They violate the $-1 \le m_x \le 1$ requirement.

1. First interval $0 \le x \le u_o$ (AB). The requirements on the strain rate vector are such that

$$\dot{\mathbf{w}}^{*} = 0 \tag{D-1}$$

$$\dot{\mathbf{w}} \geq 0$$
 (D-2)

$$n_{\underline{b}} = -1 \tag{D-3}$$

Equations (D-1) and (D-2) together yield that $\dot{\mathbf{w}}$ is linear in distance \mathbf{x} , such that

$$\dot{\mathbf{w}} = \dot{\mathbf{A}}\mathbf{x} \tag{D-4}$$

with
$$\dot{A}(\tau) > 0$$
 (D-5)

Therefore,

$$\ddot{\mathbf{w}} = \ddot{\mathbf{A}}(\tau)\mathbf{x} \tag{D-6}$$

Equilibrium requires

$$\frac{1}{2c^2} m_x'' + n_\phi + p - \dot{w} = 0$$
 (D-7)

or using Equations (D-3) and (D-6)

$$m_{x}^{"} + 2c^{2} (-1+p) - 2c^{2} \ddot{A}x = 0$$
 (D-8)

Integrating twice Equation (D-8)

$$m_{x}^{*} = 2c^{2} \left[\frac{1}{2} \ddot{A} x^{2} - (p-1)x \right] + C_{1}$$
 (D-9)

$$m_x = \frac{1}{3} c^2 \ddot{A} x^3 - c^2 (p-1)x^2 + C_1 x + D_1$$
 (D-10)

At x = 0, $m_x(0) = -1$, yields

$$D_1 = -1 \tag{D-11}$$

Hence,

$$m_x = \frac{1}{3} c^2 \ddot{A} x^3 - c^2 (p-1)x^2 + C_1 x - 1$$
 (D-12)

To proceed further we need to consider the second region $u_0 < x \le 1$ and then examine both solutions at $x = u_0$.

2. Second interval $u < x \le 1$ (point B on yield surface). The strain rate requirements are

$$\dot{\mathbf{w}} \geq \mathbf{0} \tag{D-13}$$

$$\dot{\mathbf{w}}^{"} \leq \mathbf{0} \tag{D-14}$$

and

$$n_{h} = -1$$
 (D-15)

$$\mathbf{m}_{\mathbf{y}} = 1 \tag{D-16}$$

together with

$$\frac{1}{2c^2} m_{x}^{"} + n_{\phi} + p - \ddot{w} = 0$$
 (C-17)

Substituting Equations (D-15) and (D-16) in Equation (D-17)

$$\ddot{w} = n_{\phi} + p = p - 1$$
 (D-18)

and integrating once

$$\dot{w} = (p-1)\tau + D_1$$
 (D-19)

Since, however, $\dot{\mathbf{w}}(\mathbf{x}, \mathbf{o}) = 0$, $\mathbf{D}_1 = 0$.

Therefore,

$$\dot{\mathbf{w}} = (\mathbf{p} - 1)\tau \tag{D-20}$$

Integrating again

$$w = \frac{1}{2}(p-1)\tau^2 + E_1$$
 (D-21)

where E_1 will be determined by matching displacements of $x = u_0$ from the first interval $(0 \le x < u_0)$.

Since in the second interval $(u_0 < x \le 1)$ $m_x = 1$, it must match m_x of the first interval $(0 \le x < u_0)$, i.e, by Equation (D-12)

$$\frac{1}{3}c^{2}\ddot{A}u_{o}^{3}-c^{2}(p-1)u_{o}^{2}+C_{1}u_{o}-1=1$$
(D-22)

Furthermore, the shearing forces must match, i.e,

$$m_{\mathbf{x}}^{*}(u_{o},\tau) = \left[c^{2}\ddot{\mathbf{A}}\mathbf{x}^{2} - 2c^{2}(p-1)\mathbf{x} + C_{1}\right] = \mathbf{x} = u_{o}$$

$$c^2 \ddot{A} u_0^2 - 2c^2(p-1)u_0 + C_1 = 0$$
 (D-23)

Since the hinge may be stationary, there may be a discontinuity in slope. However, displacements, velocities, and accelerations must be equal at $x = u_0$, i.e., from Equations (D-6) and (D-18)

$$\ddot{A}(\tau)u_{0} = p-1 \tag{D-24}$$

Therefore,

$$\ddot{A}(\tau) = \frac{p-1}{u_0} \tag{D-25}$$

and by Equations (D-25) and (D-6)

$$\ddot{\mathbf{w}}(\tau) = \frac{(\mathbf{p}-1)}{\mathbf{u}_0} \mathbf{x} \tag{D-26}$$

represents the acceleration in the first interval (0 \leq x < u $_{0}$). By Equations (D-4) and (D-19)

$$\dot{A} u_{O} = (p-1)\tau$$
 (D-27)

i.e.,

$$\dot{A}(\tau) = \frac{(p-1)}{u_0} \tau \tag{D-28}$$

This means that u_0 is a constant and in $0 \le x \le u_0$

$$\dot{\mathbf{w}}(\mathbf{x},\tau) = \dot{\mathbf{A}}\mathbf{x} = \frac{(\mathbf{p}-1)}{\mathbf{u}_o} \, \tau \, \mathbf{x}$$
 (D-29)

and

$$w(x,\tau) = \frac{1}{2} \frac{(p-1)}{u_0} \tau^2 x$$
 (D-30)

because w(x,o) = 0.

At this point we consider that at $x = u_0$ the displacements must agree. By Equations (D-30) and (D-21), $E_1 = 0$. Hence, in the second interval $(u_0 < x \le 1)$

$$w = \frac{1}{2}(p-1)\tau^2$$
 (D-31)

Furthermore, replacing Equation (D-25) in Equation (D-12) we get

$$m_{x} = 2 \left[\left(\frac{x}{u_{o}} \right)^{3} - 3 \left(\frac{x}{u_{o}} \right)^{2} + 3 \left(\frac{x}{u_{o}} \right) - \frac{1}{2} \right]$$
 (D-32)

for $(0 \le x \le u_0)$

Substitute Ä from Equation (D-25) in Equation (D-23) to obtain

$$C_1 = c^2 (p-1) u_0$$
 (D-33)

Substitute the values of C_1 from Equation (D-33) and \ddot{A} from Equation (D-25) in Equation (D-22) to determine u_0

$$u_0^2 = \frac{6}{c^2(p-1)}$$
 (p-34)

In Equation (D-32) the moment resultant can be written in an alternate form

$$m_{\chi}(x,\tau) = 2\left(\frac{x}{u_0} - 1\right)^3 + 1$$
 (D-35)

Therefore, Tables D-1 and D-2 display the solutions for times $0 \le \tau \le 1$ in the two intervals, $o \le x \le u_o$ and $u_o < x \le 1$. Figure D-1 gives information on the velocity profiles for times $o \le \tau \le 1$ as well as $1 \le \tau \le \tau'$, which will be analyzed next.

Note once more that since

$$\frac{\partial m_{x}}{\partial x} = \frac{6}{u_{o}} \left(\frac{x}{u_{o}} - 1 \right)^{2} \ge 0 \tag{D-36}$$

$$\frac{\partial^2 \mathbf{m}}{\partial \mathbf{x}^2} = \frac{12}{\mathbf{u_o}^2} \left(\frac{\mathbf{x}}{\mathbf{u_o}} - 1 \right) \le 0 \tag{D-37}$$

The function m is uniformly increasing in the interval $0 \le x \le u_0$. This is to be considered later (long shells, high loading).

STAGE 2

Pressure load p is removed, p = 0, where τ' is a time that will be defined later. We must solve the equilibrium equation

$$\frac{1}{2c^2} m_{x}' + p + n_{\phi} - \ddot{w} = 0$$
 (D-38)

with p = 0, with initial conditions as to velocity and displacement given by Stage 1. We must also satisfy the conditions imposed by the normality requirements of the strain rate vector to the yield surface. We assume that the same two ranges on the yield surface apply, i.e.,

1. First interval. For $0 \le x \le u$, we are along AB.

$$n_{\phi} = -1 \tag{D-39}$$

$$-1 \le m_x \le 1 \tag{D-40}$$

$$\dot{\mathbf{w}} > 0 \tag{D-41}$$

$$\dot{\mathbf{w}}^{-} = 0 \tag{D-42}$$

and

$$\dot{\mathbf{w}}(1) = \frac{(\mathbf{p}-1)}{\mathbf{u}_0} \mathbf{x}$$
 (D-43)

$$u_0^2 = \frac{6}{c^2(p-1)}$$
 (D-44)

$$\ddot{w}(1) = \frac{(p-1)}{u_0}$$
 (D-45)

$$w(x,1) = \frac{1}{2} \frac{(p-1)}{u_0} x$$
 (D-46)

$$m_{x}(x,1) = 2\left(\frac{x}{u_{0}} - 1\right)^{3} + 1$$
 (D-47)

2. Second interval. For $u < x \le 1$ (at corner B of yield surface; see Figure A-3).

$$n_{\phi} = -1 \tag{D-48}$$

$$\mathbf{m}_{-} = -1 \tag{D-49}$$

$$\dot{\mathbf{w}} \geq \mathbf{0} \tag{D-50}$$

$$\dot{\mathbf{w}}^{"} \leq \mathbf{0} \tag{D-51}$$

and

$$\dot{w}(1) = p - 1$$
 (D-52)

$$u_0^2 = \frac{(p-1)}{u_0}$$
 (D-53)

$$\ddot{w}(1) = p - 1$$
 (D-54)

$$w(x,1) = \frac{1}{2}(p-1)$$
 (D-55)

1. First Interval $0 \le x \le u$ $(1 \le \tau \le \tau')$

Take

$$\dot{\mathbf{w}}(\tau) = (\mathbf{p} - \tau) \frac{\mathbf{x}}{\mathbf{u}(\tau)} \tag{D-56}$$

Then by differentiating with time τ

$$\ddot{w} = \frac{d}{d\tau} \left[(p - \tau) \frac{x}{u} \right] = -\frac{x}{u} \left[1 + \frac{(p - \tau)\dot{u}}{u} \right]$$
 (D-57)

Solving

$$\frac{1}{2c^2} m_{x}^{"} - 1 - \dot{w} = 0 \tag{D-58}$$

$$\frac{1}{2c^2} m_{x}^{"} = 1 - \frac{x}{u} \left[1 + \frac{(p-\tau)}{u} u \right]$$
 (D-58)

$$m_{x}^{"} = 2c^{2} \left[1 - \left(\frac{u}{u^{2}} + \frac{(p-\tau)\dot{u}}{u^{2}} \right) x \right]$$
 (D-59)

$$\mathbf{m}_{\mathbf{x}}' = 2c^2 \left[\mathbf{x} - \frac{1}{2} \left(\frac{\mathbf{u}}{\mathbf{u}^2} + \frac{(\mathbf{p} - \tau)\dot{\mathbf{u}}}{\mathbf{u}^2} \right) \mathbf{x}^2 \right] + C_1$$
 (D-60)

At x = u, $m_{x}' = 0$, i.e.,

$$c_1 = -2c^2 \left[\frac{u}{2} - \frac{1}{2}(p-\tau)\dot{u} \right]$$
 (D-61)

$$m_{x}' = 2c^{2}\left[\left(x - \frac{u}{2}\right) + \frac{1}{2}\left((p-\tau)\dot{u} - \left(\frac{1}{u} + \frac{(p-\tau)\dot{u}}{u^{2}}\right)x^{2}\right)\right]$$
 (D-62)

$$m_{x} = 2c^{2}\left[\left(\frac{x^{2}}{2} - \frac{u}{2}x\right) + \frac{1}{2}\left\{(p-\tau)\dot{u}x - \frac{1}{3}\left(\frac{1}{u} + \frac{(p-\tau)\dot{u}}{u^{2}}\right)x^{3}\right\}\right] + D_{1}$$
 (D-63)

But

$$m_{x}(o) = -1$$
 gives $D_{1} = -1$

Hence,

$$m_x = c^2 x^2 - c^2 u x + c^2 (p - \tau) \dot{u} x - \frac{c^2}{3} \left(\frac{1}{u} + \frac{(p - \tau) \dot{u}}{u^2} \right) x^3 - 1$$
 (D-64)

Also at x = u, $m_{x} = 1$ yields the following ordinary differential equation

$$\frac{2}{3} c^{2} (p-\tau)u\dot{u} = 2 + \frac{1}{3} c^{2}u^{2}$$
 (D-65)

or

$$\frac{2}{3} \frac{(p-\tau)udu}{d\tau} = \frac{2}{c^2} + \frac{1}{3} u^2$$
 (D-66)

$$\frac{d\tau}{p-\tau} = \frac{2udu}{\left(u^2 + \frac{6}{c^2}\right)} \tag{D-67}$$

Hence integrating we get

$$-\log_{e}|p-\tau| = \log_{e} \left| u^{2} + \frac{6}{c^{2}} \right| + C_{1}$$
 (D-68)

But at $\tau = 1$

$$u^2 = u_0^2 = \frac{6}{c^2(p-1)}$$
 (D-69)

Therefore,

$$c_1 = \log_e \left| \frac{c^2}{6p} \right| \tag{D-70}$$

and, finally,

$$u^{2} = \frac{6\tau}{c^{2}(p-\tau)}$$
 (D-71)

Using the differential Equation (D-65) in Equation (D-57), the acceleration can be rewritten as

$$\ddot{w} = -\frac{x}{u} \left[1 + \frac{(p-\tau)\dot{u}}{u} \right] = -\left(\frac{3}{2} \right) \left(\frac{x}{u} \right) \left[1 + \frac{2}{u^2 c^2} \right]$$
 (D-72)

However, using Equation (D-71) we get

$$\ddot{\mathbf{w}} = -\frac{3}{2} \left(\frac{\mathbf{x}}{\mathbf{u}} \right) \left[1 + \frac{2}{\left\{ \frac{6\tau}{(\mathbf{p} - \tau)} \right\}} \right] = -\frac{1}{2} \left(\frac{\mathbf{x}}{\mathbf{u}} \right) \left[2 + \frac{\mathbf{p}}{\tau} \right]$$
(D-73)

$$\ddot{w} = -\frac{1}{2} \left(\frac{x}{u} \right) \left[2 + \frac{p}{\tau} \right] \tag{D-74}$$

which makes acceleration linear with distance for points $0 \le x \le u$. We also note that it is a "deceleration" (negative sign) since the load was removed while in Stage 1 ($0 \le \tau \le 1$) [Equations (D-6) and (D-25)].

$$\ddot{\mathbf{w}}(\tau) = \frac{(\mathbf{p}-1)}{\mathbf{u}_{\mathbf{o}}}\mathbf{x} \tag{D-75}$$

represents a positive acceleration.

Using Equation (D-65) in the moment resultant Equation (D-64), we obtain

$$m_{\mathbf{x}}(\mathbf{x},\tau) = -\frac{1}{2}(2 + c^2u^2)(\frac{\mathbf{x}}{u})^3 + c^2u^2(\frac{\mathbf{x}}{u})^2 + (3 - \frac{c^2u^2}{2})(\frac{\mathbf{x}}{u}) - 1$$
 (D-76)

which becomes 1 at x = u.

Therefore, for $0 \le x \le u_0$

$$\mathbf{m}_{\mathbf{x}}' = -\frac{3}{2} \left(\frac{2}{\mathbf{u}^3} + \frac{\mathbf{c}^2}{\mathbf{u}} \right) \mathbf{x}^2 + 2\mathbf{c}^2 \mathbf{x} + \left(\frac{3}{\mathbf{u}} - \frac{\mathbf{c}^2 \mathbf{u}}{2} \right)$$
 (D-77)

and

$$m_{x}'' = -3\left[\frac{2}{u^{3}} + \frac{c^{2}}{u}\right]x + 2c^{2}$$
 (D-78)

One of the roots ρ_1 of $m_x' = 0$ is $\rho_1 = u$. Thus the other one, ρ_2 , is

$$\rho_2 = \frac{-2\left[\frac{3}{u^2} - \frac{c^2}{2}\right]}{3\left[\frac{2}{u^3} + \frac{c^2}{u}\right]} = \frac{\left(c^2 - \frac{6}{u^2}\right)}{3\left[\frac{2}{u^3} + \frac{c^2}{u}\right]}$$
(D-79)

We can rewrite m' as

$$\mathbf{m}_{\mathbf{x}}^{\prime} = -\frac{3}{2} \left[\frac{2}{\mathbf{u}^{3}} + \frac{\mathbf{c}^{2}}{\mathbf{u}} \right] \left\{ \mathbf{x}^{2} - \frac{4\mathbf{c}^{2}}{3 \left[\frac{2}{\mathbf{u}^{3}} + \frac{\mathbf{c}^{2}}{\mathbf{u}} \right]} \mathbf{x}^{2} - \frac{\left(\frac{3}{\mathbf{u}} - \frac{\mathbf{c}^{2}\mathbf{u}}{2} \right)}{3 \left[\frac{2}{\mathbf{u}} - \frac{\mathbf{c}^{2}\mathbf{u}}{2} \right]} \right\} =$$

$$-\frac{3}{2}\left[\frac{2}{u^3} + \frac{c^2}{u}\right][x-\rho_1][x-\rho_2]$$
 (D-80)

Since $m_{\mathbf{x}}^{*}(\mathbf{x}) \geq 0$ and u,c > 0 this means that

$$(\mathbf{x}-\rho_1)(\mathbf{x}-\rho_2) \leq 0 \tag{D-81}$$

or x must lie within the range of the roots ρ_1 and ρ_2 . This means that since $0 \le x \le u$, the second root ρ_2 cannot be positive, because then there will be an interval $(0,\rho_2)$ for which a value of x will yield $(x-\rho_1)(x-\rho_2)$ non-negative.

Thus,

$$\rho_2 = \frac{\left(c^2 - \frac{6}{u^2}\right)}{3\left[\frac{2}{u^3} + \frac{c^2}{u}\right]} \le 0 \tag{D-82}$$

means

$$u^2 \le \frac{6}{c^2} \tag{D-83}$$

At x = 0, where the supports are, $m_{\overline{x}}$ becomes

$$m_{\mathbf{x}}'(\mathbf{o}) = \frac{3}{u} - \frac{c^2 u}{2}$$
 (D-84)

For the function not to become less than -1, $m_{x}^{*}(o)$ must be non-negative,

i.e.,

$$m_{\mathbf{x}}'(0) = \frac{3}{u} - \frac{c^2 u}{2} \ge 0$$
 (D-85)

or

$$u^2 \leq \frac{6}{c^2} \tag{D-86}$$

Since the shell is short, $c^2 < 6$ means that

$$u^2 \leq \frac{6}{c^2} > 1 \tag{D-87}$$

However, at the beginning and time τ = 1 the initial value that u assumes is u given by Equation (D-71), i.e.,

$$u_0^2 = \frac{6}{c^2(p-1)}$$
 (D-88)

which cannot exceed 1, i.e.,

$$u_0^2 = \frac{6}{c^2(p-1)} \le 1$$
 or $p \ge 1 + \frac{6}{c^2}$

As time goes on, we know that u increases, as per

$$u^{2} = u_{0}^{2} \left[1 + \frac{(\tau - 1)}{(p - \tau)} \right] \tau$$
 (D-89)

until at $\tau \leq \frac{c^2}{c^2+6}p$, u becomes 1.

In summary, therefore, $c^2 < 6$ and $p > 1 + \frac{6}{c^2}$ guarantees that $m_X^*(o) \ge o$. At the other end, $x = u_{,X}m^*(u) = o$, and it is the second derivative that dictates that the moment resultant is less than or equal to 1, since

$$m_{x}^{"}(u) = -\frac{6}{u^{2}} - c^{2} = -\left(\frac{6}{u^{2}} + c^{2}\right) < 0$$
 (D-90)

Returning to the velocity equation we have, noting that

$$u^2 = \frac{6\tau}{c^2(p-\tau)} \tag{D-91}$$

$$\tau = \frac{c^2 u^2}{(6 + c^2 u^2)} p$$
 (D-92)

$$(p-\tau)^2 = \frac{36\tau^2}{c^4u^4} = \frac{36}{(6+c^2u^2)^2} p^2$$
 (D-93)

and

$$6 + c^2 u^2 = \frac{6p}{p-\tau}$$
 (D-94)

we proceed as follows

$$\dot{\mathbf{w}} = \mathbf{x} \, \frac{(\mathbf{p} - \tau)}{\mathbf{u}} \tag{D-95}$$

or

$$dw = x \frac{(p-\tau)}{u} d\tau \tag{D-96}$$

However, by the differential equation that u satisfies Equation (D-66)

$$\frac{d\tau}{u} = \frac{2}{3} \frac{(p-\tau)}{\left(\frac{2}{c^2} + \frac{1}{3}u^2\right)}$$
 (D-97)

or

$$dw = \frac{2}{3}x(p-\tau)^2 \frac{du}{\left(\frac{2}{c^2} + \frac{1}{3}u^2\right)}$$
 (D-98)

Writing $(p-\tau)^2$ in terms of u only, we get

$$dw = \frac{72x}{c^4} p^2 \frac{du}{\left(u^2 + \frac{6}{c^2}\right)^3}$$
 (D-99)

By Table D-3, however,

$$w = \int_{u=u_0}^{u} \frac{72x}{c^4} p^2 \frac{du}{\left(u^2 + \frac{6}{c^2}\right)^3} =$$

$$xp^{2}\left[\frac{6u}{c^{2}}\left\{\frac{1}{2\left(u^{2}+\frac{6}{c^{2}}\right)^{2}}+\frac{c^{2}}{8\left(u^{2}+\frac{6}{c^{2}}\right)}\right\}+\right]$$

$$\frac{3c}{4\sqrt{6}}\tan^{-1}\left(\frac{cu}{\sqrt{6}}\right)\bigg|_{u=u_0}^{u=u} + f(x)$$
(D-100)

or

$$w(x,u) = f(x) + xp^{2} \left[\frac{6u}{c^{2}} \left(\frac{1}{2(u^{2} + \frac{6}{c^{2}})^{2}} + \frac{c^{2}}{8(u^{2} + \frac{6}{c^{2}})} \right) \right] -$$

$$\frac{6}{c^2} \frac{\sqrt{6}}{c\sqrt{p-1}} \left\{ \frac{c^4(p-1)^2}{72p^2} + \frac{c^4(p-1)}{48p} \right\} +$$

$$\frac{3c}{4\sqrt{6}}\left(\tan^{-1}\left(\frac{cu}{\sqrt{6}}\right) - \tan^{-1}\left(\sqrt{\frac{1}{p-1}}\right)\right) \tag{D-101}$$

and we have replaced $u_0^2 + \frac{6}{2}$ by

$$u_o^2 + \frac{6}{c^2} = \frac{6}{c^2} \left(\frac{p}{p-1}\right)$$
 (D-102)

or

$$w(x,u) = f(x) + xp^{2} \left\{ \frac{6}{c^{2}} \left\{ \frac{uc^{4}}{2(6+c^{2}u^{2})^{2}} - \frac{\sqrt{6}}{c\sqrt{p-1}} \cdot \frac{c^{4}(p-1)^{2}}{72p^{2}} \right\} + \right.$$

$$\frac{6}{c^2} \frac{uc^4}{8(6+c^2u^2)} - \frac{\sqrt{6}}{c\sqrt{p-1}} \frac{c^4(p-1)}{48p} +$$

$$\frac{3c}{4\sqrt{6}}\left(\tan^{-1}\left(\frac{cu}{\sqrt{6}}\right) - \tan^{-1}\left(\sqrt{\frac{1}{p-1}}\right)\right)$$
 (D-103)

or

$$w(x,u) = f(x) + xp^{2} \left\{ \frac{3c^{2}u}{(6+c^{2}u^{2})^{2}} - \frac{c}{2\sqrt{6}} \frac{(p-1)^{3/2}}{p^{2}} \right\} +$$

$$\left\{ \frac{3c^2u}{4(6+c^2u^2)} - \frac{\sqrt{6}}{8} c \frac{\sqrt{p-1}}{p} \right\} +$$

$$\frac{\sqrt{6}}{8} c \left(\tan^{-1} \left(\frac{cu}{\sqrt{6}} \right) - \tan^{-1} \left(\sqrt{\frac{1}{p-1}} \right) \right)$$
 (D-104)

This can also be rewritten in terms of time τ as

$$w(x,\tau) = f(x) + x \left[\frac{c}{2\sqrt{6}} \sqrt{\tau} (p-\tau)^{3/2} + \frac{3c}{4\sqrt{6}} p \sqrt{\tau(p-\tau)} + \right]$$

$$\frac{3c}{4\sqrt{6}}p^2 \tan^{-1}\left(\sqrt{\frac{\tau}{p-\tau}}\right) = \frac{\tau}{\tau} = 1$$

$$f(x) + x \left[\frac{c}{2\sqrt{6}} \left\{ \sqrt{\tau} (p-\tau)^{3/2} - (p-1)^{3/2} \right\} + \right]$$

$$\frac{3c}{4\sqrt{6}}p\left\{\sqrt{\tau(p-\tau)} - \sqrt{(p-1)}\right\} + \frac{3c}{4\sqrt{6}}p^{2}\left\{\tan^{-1}\sqrt{\frac{\tau}{p-\tau}} - \tan^{-1}\sqrt{\frac{1}{p-1}}\right\}$$
 (D-105)

Using the expression for w in terms of (x,τ) , we observe that at one end at time τ = 1 for all $x \le u_0$, the expression in brackets vanishes, while f(x) assumes the form

$$f(x) = \frac{1}{2}(p-1)\left(\frac{x}{u_o}\right) \quad \text{for} \quad x \le u_o \tag{p-106}$$

By Equation (D-34)

$$f(x) = \frac{3}{c^2 u_0^2} \left(\frac{x}{u_0}\right) \quad \text{for} \quad x \le u_0$$
 (D-107)

To obtain the solution for $u_0 \le x \le u$ we proceed as follows. At this point we need to use the value of w of x = u, which has not been obtained. Using this quantity [(see second interval for $u < x \le 1$) (Equation (D-130)] we must have

$$w(x,\tau) = \frac{1}{2} \left[2p\tau - \tau^2 - p \right] = -\frac{1}{2} \left[p - 2p\tau + \tau^2 \right]$$
 (D-108)

Rewriting all τ 's in terms of u [Equation (D-92)].

$$w(x,\tau) = -\frac{p}{2} \left[1 - 2p \frac{c^2 u^2}{(6+c^2 u^2)} + p \frac{c^4 u^4}{(6+c^2 u^2)^2} \right]$$
 (D-109)

and using Equations (D-103), (D-108), and (D-109) we obtain Equation (D-110).

$$f(u) + up^{2} \left[\frac{6}{c^{2}} \left\{ \frac{uc^{4}}{2(6+c^{2}u^{2})^{2}} - \frac{\sqrt{6}}{c\sqrt{p-1}} \frac{c^{4}(p-1)^{2}}{72p^{2}} \right\} + \frac{6}{c^{2}} \left\{ \frac{uc^{4}}{8(6+c^{2}u^{2})} - \frac{\sqrt{6}}{c\sqrt{p-1}} \frac{c^{4}(p-1)}{48p} \right\} + \frac{\sqrt{6c}}{8} \left(tan^{-1} \left(\frac{cu}{\sqrt{6}} \right) - tan^{-1} \left(\frac{1}{\sqrt{p-1}} \right) \right) \right] =$$

$$- \frac{p}{2} \left[1 - 2p \frac{c^{2}u^{2}}{(6+c^{2}u^{2})^{2}} + p \frac{c^{4}u^{4}}{(6+c^{2}u^{2})^{2}} \right]$$
(D-110)

Hence,

$$f(u) = -\frac{p}{2} \left[1 - 2p \frac{c^2 u^2}{(6+c^2 u^2)} + p \frac{c^4 u^4}{(6+c^2 u^2)^2} \right] - \frac{\sqrt{6c}}{8} p^2 u \left\{ tan^{-1} \left(\frac{cu}{\sqrt{6}} \right) - tan^{-1} \left(\sqrt{\frac{1}{p-1}} \right) \right\} - up^2 \left[\frac{6}{c^2} \left\{ \frac{uc^4}{2(6+c^2 u^2)^2} - \frac{\sqrt{6}}{c\sqrt{p-1}} \frac{c^4 (p-1)^2}{72p^2} \right\} + \frac{6}{c^2} \left\{ \frac{uc^4}{8(6+c^2 u^2)} - \frac{\sqrt{6}}{c\sqrt{p-1}} \frac{c^4 (p-1)}{48p} \right\} \right]$$
(D-111)

Consequently $(1 \le \tau \le \tau')$

$$w(x,\tau) = \frac{1}{2}(p-1)\left(\frac{x}{u_0}\right) + x \left[\frac{c}{2\sqrt{6}} \left\{\sqrt{\tau}(p-\tau)^{3/2} - (p-1)^{3/2}\right\} + \frac{3c}{4\sqrt{6}}p \left\{\sqrt{\tau(p-\tau)} - \sqrt{p-1}\right\} + \frac{\sqrt{6}}{8}cp^{2}\left\{tan^{-1}\left(\sqrt{\frac{\tau}{p-\tau}}\right) - tan^{-1}\left(\sqrt{\frac{1}{p-1}}\right)\right\}\right\}$$
(D-112)

in the interval

$$0 \le x \le u_0$$

and

$$w(x,\tau) = -\frac{p}{2} \left[1 - 2p \frac{c^2 x^2}{(6+c^2 x^2)} + p \frac{c^4 x^4}{(6+c^2 x^2)^2} \right] +$$

$$\frac{\sqrt{6}}{8} cp^2 x \left[tan^{-1} \left(\frac{cu}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right] +$$

$$xp^2 \left[\frac{3c^2 u}{(6+c^2 u^2)^2} - \frac{3c^2 x}{(6+c^2 x^2)^2} + \frac{3c^2 u}{4(6+c^2 u^2)} - \frac{3c^2 x}{(6+c^2 x^2)} \right]$$

 $u_0 \leq x \leq u$.

(D-113)

This agrees with the two end values. Furthermore, $\dot{w} > 0$ for all p > τ and \dot{w} = 0 as required.

2. Second interval (u < x < 1) and 1 < τ < τ' , where τ' is defined later.

Solve

for

$$\frac{1}{2c^2} m_{x}^{"} + p + n_{\phi} - \ddot{w} = 0$$
 (D-114)

with

$$p = 0 (D-115)$$

$$\mathbf{m}_{\mathbf{y}} = -1 \tag{D-116}$$

$$n_{\underline{\bullet}} = -1 \tag{D-117}$$

$$\dot{\mathbf{w}} \ge 0 \tag{D-118}$$

$$\dot{\mathbf{w}}^{\mathbf{w}} \leq \mathbf{0} \tag{D-119}$$

The equilibrium equation reduces to

$$\ddot{\mathbf{w}} = -1 \tag{D-120}$$

By integrating with respect to time

$$\dot{\mathbf{w}} = -\tau + \mathbf{c}_1 \tag{D-121}$$

At
$$\tau = 1$$
, $\dot{w}(1) = p - 1$ (D-122)

hence,

$$p - 1 = -1 + C_1$$
 (D-123)

$$C_1 = p$$
 (D-124)

i.e.,

$$\dot{\mathbf{w}}(\tau) = \mathbf{p} - \tau \tag{D-125}$$

for all
$$p - \tau \ge 0$$
. (D-126)

Integrating again

$$w(\tau) = p\tau - \frac{1}{2}\tau^2 + C_2 \qquad (D-127)$$

However, at $\tau = 1$ by Equation (D-55)

$$w(1) = \frac{1}{2}(p-1) = p - \frac{1}{2} + C_2$$
 (D-128)

$$C_2 = -\frac{k}{2}$$
 (D-129)

Hence,

$$w(\tau) = \frac{1}{2} \Big[2p\tau - \tau^2 - p \Big]$$
 (D-130)

STAGE 3 $(\tau' \leq \tau \leq \tau_0)$

We observe that when u reaches the midpoint (u = 1), the velocity \dot{w} is still not zero, i.e., for time τ' when

$$u^{2} = \frac{6\tau'}{c^{2}(p-\tau')} = 1$$
 (D-131)

i.e.,

$$\tau' = \frac{c^2}{c^2 + 6} p = \frac{p}{\left(1 + \frac{6}{c^2}\right)} = \frac{p}{p_{high}}$$
 (D-132)

$$\dot{\mathbf{w}}(\tau^{\dagger}) = (\mathbf{p} - \tau^{\dagger})\mathbf{x} \neq \mathbf{0} \tag{D-133}$$

the hinge has reached the center and motion continues.

Again, we must consider the possible portion on the yield surface. Hodge concludes that portion AB, for which

$$n_{\phi} = -1 \tag{D-134}$$

$$-1 \leq m_{\chi} \leq 1 \tag{D-135}$$

$$\dot{\mathbf{w}}^* = \mathbf{0} \tag{D-136}$$

$$\dot{\mathbf{w}} > \mathbf{0} \tag{D-137}$$

is the correct location. In addition to the above we must have continuity of velocities, accelerations, displacements, and stress resultants, at time $\tau = \tau'$.

The equilibrium equation to be solved then is

$$\frac{1}{2c^2} m_{X}^{"} + p + n_{\phi} - \ddot{W} = 0$$
 (D-138)

with

$$n_{\phi} = -1$$
 , $p = 0$, i.e.,

$$\frac{1}{2c^2} m_{x}^{w} = 1 + \ddot{w} \tag{D-139}$$

However, by Equation (D-66) or Table D-3 we know that at $\tau = \tau'$

$$\ddot{\mathbf{w}}(\tau') = -\frac{1}{2} \left\{ \left(\frac{\mathbf{x}}{\mathbf{u}} \right) \left[2 + \frac{\mathbf{p}}{\tau} \right] \right\}_{\tau = \tau'} = \mathbf{u} = 1$$

$$-\frac{1}{2} \times \left(\frac{3c^2+6}{c^2}\right) = -\frac{3}{2} \times \left(\frac{c^2+2}{c^2}\right)$$
 (D-140)

and

$$\dot{\mathbf{w}}(\tau') = \left\{ (\mathbf{p} - \tau) \left(\frac{\mathbf{x}}{\mathbf{u}} \right) \right\} = (\mathbf{p} - \tau') \mathbf{x} = \mathbf{v}$$

$$\mathbf{v} = \mathbf{1}$$

$$\left(p - \frac{c^2}{c^2 + 6}p\right) x = x \frac{6}{\left(c^2 + 6\right)}p = \frac{3}{2} x \frac{4}{\left(c^2 + 6\right)}p$$
 (D-141)

Since the velocity must be non-negative for the strain vector to satisfy the flow rule on the yield surface and since its second derivative with respect to the space variable x is zero, the velocity can only be linear in x. Assume

$$\dot{\mathbf{w}}(\tau) = (\mathbf{A}_1 + \mathbf{A}_2 \tau) \mathbf{x} \tag{D-142}$$

then
$$\ddot{w}(\tau) = A_2 x$$
 (D-143)

From the boundary condition

$$A_2 = -\frac{3}{2} \left(\frac{c^2 + 2}{c^2} \right) \tag{D-144}$$

$$\ddot{w}(\tau) = -\frac{3}{2} \left(\frac{c^2 + 2}{c^2} \right) x \tag{D-145}$$

Hence,

$$\dot{\mathbf{w}}(\tau) = \left[\mathbf{A}_1 - \frac{3}{2} \left(\frac{\mathbf{c}^2 + 2}{\mathbf{c}^2} \right) \tau \right] \mathbf{x}$$
 (D-146)

From the boundary condition on velocity, however,

$$\frac{3}{2} \times \frac{4}{(c^2+6)} p = \left[A_1 - \frac{3}{2} \left(\frac{c^2+2}{c^2} \right) \cdot \frac{c^2}{c^2+6} p \right] x$$
 (D-147)

or

$$A_1 = \frac{3}{2} p$$
 (D-148)

Hence,

$$\dot{\mathbf{w}}(\tau) = \frac{3}{2} \times \left[p - \left(\frac{e^2 + 2}{c^2} \right) \tau \right] \tag{D-149}$$

This equation is valid for all times for which $\dot{w}(\tau) \geq 0$, i.e.,

$$p - \left(\frac{c^2 + 2}{c^2}\right)\tau \ge 0 \tag{D-150}$$

i.e., for times τ in excess of τ' $\left(\tau' = \frac{c^2}{c^2 + 6}p\right)$, but less than or equal to τ_0

$$\tau_{o} \le \frac{c^2}{c^2 + 2} p \tag{D-151}$$

 $\boldsymbol{\tau}_{O}$ represents the time for which velocity $\dot{\boldsymbol{w}}(\boldsymbol{\tau})$ vanishes and motion stops.

Before we integrate the velocity to obtain the displacement distribution we use, integrate the equation of equilibrium

$$\frac{1}{2c^2} m_{\mathbf{x}}^{"} = 1 - \frac{3}{2} \left(\frac{c^2 + 2}{c^2} \right) \mathbf{x}$$
 (D-152)

$$\frac{1}{2c^2} m_x' = x - \frac{3}{4} \left(\frac{c^2 + 2}{c^2} \right) x^2 + C_1$$
 (D-153)

$$\frac{1}{2c^2} m_{\mathbf{x}} = \frac{\mathbf{x}^2}{2} - \frac{1}{4} \frac{\left(c^2 + 2\right)}{c^2} \mathbf{x}^3 + C_1 \mathbf{x} + C_2 \tag{D-154}$$

At x = 1, $m_{\overline{x}}^{i} = 0$, i.e.,

$$c_1 = \frac{6 - c^2}{4c^2}$$
 (D-155)

$$\frac{1}{2c^2} \mathbf{m}_{\mathbf{x}}' = \mathbf{x} - \frac{3}{4} \left(\frac{c^2 + 2}{c^2} \right) \mathbf{x}^2 + \frac{6 - c^2}{4c^2}$$
 (D-156)

$$\mathbf{m}_{\mathbf{x}}' = 2\mathbf{c}^2\mathbf{x} - \frac{3}{2}(\mathbf{c}^2 + 2)\mathbf{x}^2 + \frac{6 - \mathbf{c}^2}{2} =$$

$$-3\left(\frac{c^2}{2}+1\right)x^2+2c^2x+\left(3-\frac{c^2}{2}\right)$$
 (D-157)

$$m_x = -\left(\frac{c^2}{2} + 1\right)x^3 + c^2x^2 + \left(3 - \frac{c^2}{2}\right)x + c_2$$
 (D-158)

At x = 1,

$$m_{x}(x=1) = 1$$
 (D-159)

giving $C_2 = -1$. Therefore,

$$m_x = -\left(\frac{c^2}{2} + 1\right)x^3 + c^2x^2 + \left(3 - \frac{c^2}{2}\right)x - 1$$
 (D-160)

We also note that $m_{\chi}(0) = -1$, as it should.

Furthermore, as Equation (B-88) indicates, the yield criterion is not violated. [See Appendix B, Equation (B-81), short shells, low loading.]

Integrating the velocity $\dot{w}(\tau)$ and applying the boundary conditions that, in the two regimes (and for $\tau' \leq \tau \leq \tau_0$)

(a)
$$0 \le x \le u_0$$
, and

(b)
$$u_0 < x \le 1$$

displacements at $\tau = \tau'$ must match, we have

$$w(\tau) = \frac{3}{2}x \left[p\tau' - \frac{1}{2} \frac{(c^2+2)}{c^2}\tau'^2\right] + E_1(x) = \frac{3}{4}xp^2 \frac{(c^2+10)c^2}{(c^2+6)^2} + E_1(x) \qquad (D-161)$$

In the interval $0 \le x \le u_0$

at
$$\tau = \tau' = \frac{c^2}{c^2 + 6}$$
 (D-162)

we have

$$w(x,\tau') = \frac{1}{2}(p-1) \frac{x}{u_0} + x \left[\frac{c}{2\sqrt{6}} \left\{ \sqrt{\tau'} (p-\tau')^{3/2} - \frac{c}{2\sqrt{6}} \right\} \right]$$

$$(p-1)^{3/2}$$
 $+\frac{3c}{4\sqrt{6}}p\left\{\sqrt{\tau'(p-\tau')}-\sqrt{p-1}\right\}+$

$$\frac{\sqrt{6}}{8} \operatorname{cp}^{2} \left\{ \tan^{-1} \left(\sqrt{\frac{\tau'}{p-\tau'}} \right) - \tan^{-1} \sqrt{\frac{1}{p-1}} \right\} \right]$$
 (D-163)

Observe that at that time

$$\frac{\tau'}{p-\tau'} = \frac{c^2}{6} \tag{D-164}$$

$$\tau'(p-\tau') = \frac{6c^2}{(c^2+6)^2} p^2$$
 (D-165)

$$\sqrt{\tau'}(p-\tau')^{3/2} = 6\sqrt{6c} \frac{p^2}{(c^2+6)^2}$$
 (D-166)

Therefore, for $0 \le x \le u_0$

$$w(x,\tau') = \frac{1}{2}(p-1)\frac{x}{u_0} + x\left[\left\{\frac{3c^2}{(c^2+6)^2}p^2 - \frac{c}{2\sqrt{6}}(p-1)^{3/2}\right\} + \frac{1}{2}(p-1)^{3/2}\right]$$

$$\left\{ \frac{3c^2p^2}{4(c^2+6)} - \frac{3c}{4\sqrt{6}} p \sqrt{p-1} \right\} +$$

$$\frac{\sqrt{6}}{8} \operatorname{cp}^{2} \left\{ \tan^{-1} \left(\frac{\operatorname{c}}{\sqrt{6}} \right) - \tan^{-1} \left(\sqrt{\frac{1}{p-1}} \right) \right\}$$
 (D-167)

Using Equations (D-167) and (D-161) to determine $E_1(x)$, we have:

$$\frac{3}{4} xp^2 \frac{(c^2+10)}{(c^2+6)^2} c^2 + E_1(x) = \frac{1}{2}(p-1)\frac{x}{u_0} +$$

$$x \left[\frac{3c^2}{(c^2+6)^2} p^2 - \frac{c}{2\sqrt{6}} (p-1)^{3/2} + \frac{3c^2p^2}{4(c^2+6)} - \frac{3c}{4\sqrt{6}} p \sqrt{p-1} + \right]$$

$$\frac{\sqrt{6}}{8} \operatorname{cp}^{2} \left\{ \tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - \tan^{-1} \left(\sqrt{\frac{1}{p-1}} \right) \right\}$$
 (D-168)

Hence for $o \le x \le u_o$

$$E_{1}(x) = \frac{1}{2}(p-1)\frac{x}{u_{0}} - \frac{3}{4}xp^{2}\frac{(c^{2}+10)c^{2}}{(c^{2}+6)^{2}} + \frac{3c^{2}}{(c^{2}+6)^{2}}p^{2} - \frac{c}{2\sqrt{6}}(p-1)^{3/2} + \frac{3c^{2}p^{2}}{4(c^{2}+6)} - \frac{3c}{4\sqrt{6}}p\sqrt{p-1} + \frac{\sqrt{6}}{8}cp^{2}\left\{tan^{-1}\left(\frac{c}{\sqrt{6}}\right) - tan^{-1}\left(\sqrt{\frac{1}{p-1}}\right)\right\}$$
(D-169)

For $u_0 < x \le u$ and $\tau = \tau'$

$$w(x,\tau') = -\frac{p}{2} \left[1 - 2p \frac{c^2 x^2}{(6+c^2 x^2)} + p \frac{c^4 x}{(6+c^2 x^2)^2} \right] - \frac{\sqrt{6}}{8} cp^2 \left\{ tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) - tan^{-1} \left(\sqrt{\frac{1}{p-1}} \right) \right\} - \frac{\sqrt{6}}{8} \left[\frac{3c^2 x}{(6+c^2 x^2)^2} - \frac{c}{2\sqrt{6}} \frac{(p-1)^{3/2}}{p^2} \right] + \left(\frac{3c^2 x}{4(6+c^2 x^2)} - \frac{\sqrt{6}}{8} c \frac{\sqrt{p-1}}{p} \right) \right] + \frac{\sqrt{6}}{8} cp^2 \left[\frac{3c^2 u}{(6+c^2 u^2)^2} - \frac{c}{2\sqrt{6}} \frac{(p-1)^{3/2}}{p^2} \right] + \left(\frac{3c^2 u}{4(6+c^2 u^2)} - \frac{\sqrt{6}}{8} c \frac{\sqrt{p-1}}{p} \right) \right] + \frac{\sqrt{6}}{8} cp^2 x \left\{ tan^{-1} \left(\frac{cu}{\sqrt{6}} \right) - tan^{-1} \left(\sqrt{\frac{1}{p-1}} \right) \right\}$$

$$(D-170)$$

When u' = 1

$$w(x,\tau') = -\frac{p}{2} \left[1 - 2p \frac{c^2 x^2}{(6+c^2 x^2)} + p \frac{c^4 x^4}{(6+c^2 x^2)^2} \right]$$

$$\frac{\sqrt{6}}{8} cp^2 x \left\{ tan^{-1} \left(\frac{cu'}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} +$$

$$xp^2 \left[\frac{3c^2 u'}{(6+c^2 u'^2)^2} - \frac{3c^2 x}{(6+c^2 x^2)^2} + \frac{3c^2 u'}{4(6+c^2 u'^2)^2} - \frac{3c^2 x}{4(6+c^2 x^2)^2} \right]$$
 (D-171)

For u₀ < x < u

$$w(x,\tau) = -\frac{p}{2} \left[1 - 2p \frac{c^2 x^2}{(6+c^2 x^2)} + p \frac{c^4 x^4}{(6+c^2 x^2)^2} \right] + \frac{\sqrt{6}}{8} cp^2 x \left\{ tan^{-1} \left(\frac{cu}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{c^2 x^2}{(6+c^2 u^2)^2} - \frac{3c^2 x}{(6+c^2 u^2)^2} - \frac{3c^2 x}{4(6+c^2 u^2)} - \frac{3c^2 x}{4(6+c^2 x^2)} \right]$$

$$(D-172)$$

or

$$w(x,\tau') = -\frac{p}{2} \left[1 - 2p \frac{c^2 x^2}{(6+c^2 x^2)} + p \frac{c^4 x^4}{(6+c^2 x^2)^2} \right] +$$

$$\frac{\sqrt{6}}{8} cp^2 x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} +$$

$$xp^2 \left\{ \frac{3c^2}{(6+c^2)^2} - \frac{3c^2 x}{(6+c^2 x^2)^2} + \frac{3c^2}{4(6+c^2)} - \frac{3c^2 x}{4(6+c^2 x^2)} \right\}$$
(D-173)

For $u_o \leq x \leq 1$

$$\frac{3}{4} xp^{2} \frac{\left(c^{2}+10\right)c^{2}}{\left(c^{2}+6\right)^{2}} + E_{1}(x) =$$

$$-\frac{p}{2} \left[1 - 2p \frac{c^{2}x^{2}}{\left(6+c^{2}x^{2}\right)} + p \frac{c^{4}x^{4}}{\left(6+c^{2}x^{2}\right)^{2}}\right] +$$

$$\frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}}\right) - tan^{-1} \left(\frac{cx}{\sqrt{6}}\right) \right\} +$$

$$xp^{2} \left\{ \frac{3c^{2}}{\left(6+c^{2}\right)^{2}} - \frac{3c^{2}x}{\left(6+c^{2}x^{2}\right)^{2}} + \frac{3c^{2}}{4\left(6+c^{2}\right)} - \frac{3c^{2}x}{4\left(6+c^{2}x^{2}\right)} \right\}$$
(D-174)

Hence, in the interval $u_0 \le x \le 1$

$$E_{1}(x) = -\frac{3}{4} xp^{2} \frac{(c^{2}+10)c^{2}}{(c^{2}+6)^{2}} - \frac{p}{2} \left[1 - 2p \frac{c^{2}x^{2}}{(6+c^{2}x^{2})} + p \frac{c^{4}x^{4}}{(6+c^{2}x^{2})^{2}} \right] + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{cx}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{c}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{c}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{c}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{c}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\frac{c}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8} cp^{2}x \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) + tan^{-1} \left(\frac{c}{\sqrt{6}} \right) \right\} + \frac{\sqrt{6}}{8}$$

$$xp^{2}\left\{\frac{3c^{2}}{(6+c^{2})^{2}}-\frac{3c^{2}x}{(6+c^{2}x^{2})^{2}}+\frac{3c^{2}}{4(6+c^{2})}-\frac{3c^{2}x}{4(6+c^{2}x^{2})}\right\}$$
 (D-175)

We can calculate the displacement at rest (τ = τ_0) by replacing τ by τ_0 . We obtain

$$w(\tau_{o}) = \left[\frac{3}{4} \frac{c^{2}}{(c^{2}+2)} p^{2}x + E_{1}(x)\right]_{\tau=\tau_{o}}$$
 (D-176)

AS TIME PROGRESSES AND REACHES $\tau = \tau' + \tau' + \tau'$

FIGURE D-1. VELOCITY PROFILES FOR TIME au SHORT SHELLS, HIGH LOADING

TABLE D-1. SUMMARY, SHORT SHELLS, HIGH LOADING, 1

	SHELL TYPE	PRESSURE LOADING TYPE
TYPE	SHORT (c ² <6)	HIGH LOAD $\left(p > 1 + \frac{6}{c^2}\right)$
CONDITIONS	$u_0^2 = \frac{6}{c^2 (p-1)}$	0 ≤ τ ≤ 1 0 ≤ x < u ₀
MOMENT RESULTANT	$m_{X}(x,\tau) = 2\left[\frac{x}{u_{0}} - 1\right]$	$\begin{vmatrix} 3 + 1 \end{vmatrix}_{OR} = 2 \left[\frac{x}{u_o} \right]^3 - 6 \left[\frac{x}{u_o} \right]^2 + 6 \left[\frac{x}{u_o} \right] - 1$
MEMBRANE RESULTANT		n _φ =1
DISPLACEMENT	$w(x,\tau) = \frac{1}{2} \frac{(p-1)}{u_0} \tau^2 x$	
VELOCITY		$\dot{\mathbf{w}} = \frac{(\mathbf{p} - 1)}{\mathbf{u_0}} \tau \mathbf{x}$
ACCELERATION		$\ddot{w} = \frac{(p-1)}{u_0} \times$
TIME _{To}		N/A
DISPLACEMENT AT REST	HAS	NOT COME TO REST YET

TABLE D-2. SUMMARY, SHORT SHELLS, HIGH LOADING, 2

	SHELL TYPE	PRESSURE LOADING TYPE
TYPE	SHORT $(c^2 < 6)$	HIGH LOAD $\left(p > 1 + \frac{6}{c^2}\right)$
CONDITIONS	$u_0^2 = \frac{6}{C^2(p-1)}$	$ \begin{array}{l} 0 \leqslant \tau \leqslant 1 \\ u_0 \leqslant x \leqslant 1 \end{array} $
MOMENT RESULTANT		m _X = 1
MEMBRANE RESULTANT		$n_{\varphi} = -1$
DISPLACEMENT		$w = \frac{1}{2} \left(p - 1 \right) \tau^2$
VELOCITY		$\dot{\mathbf{w}} = (\mathbf{p} - 1) \tau$
ACCELERATION		₩ = p – 1
TIME _{To}		N/A
DISPLACEMENT AT REST	HA	S NOT COME TO REST YET

ÆS
É
IVAT
DERIV
EIR D
Ħ
_
AND.
TIONS /
2
USEFUL FUNCTION
5
ä
SEF
5
E D.3.
Ę
ABL
_

DERIVATIVE F (u) WITH RESPECT TO u	$\frac{\left(\frac{6}{C^2} - 3u^2\right)}{2\left(u^2 + \frac{6}{C^2}\right)^3}$	$\frac{\left(\frac{6}{C^2} - u^2\right)}{\left(u^2 + \frac{6}{C^2}\right)^2}$	$\frac{\sqrt{6}}{C\left(u^2 + \frac{6}{C^2}\right)}$	$\frac{1}{\left(u^2 + \frac{6}{C^2}\right)^3}$
FUNCTION F (u)	$\frac{2\left(\frac{d}{c^2} + \frac{6}{c^2} \right)^2}{2\left(\frac{d}{c^2} + \frac{6}{c^2} \right)^2}$	$\frac{u}{\left(u^2 + \frac{6}{C^2}\right)}$	$\tan^{-1}\left(\frac{Cu}{\sqrt{6}}\right)$	$\frac{c^{2}}{12} \left[\frac{u}{2(u^{2} + \frac{6}{c^{2}})^{2}} + \frac{c^{2}}{8} \frac{u}{(u^{2} + \frac{6}{c^{2}})} \right]^{+}$ $+ \frac{c^{5}}{96 \sqrt{6}} \tan^{-1} \left(\frac{Cu}{\sqrt{6}} \right)$

TABLE D4. SUMMARY, SHORT SHELLS, HIGH LOADING, 3

	SHELL TYPE	PRESSURE LOADING TYPE
ТҮРЕ	SHORT (c2 < 6)	HIGH LOAD $\left(p > 1 + \frac{6}{c^2}\right)$ $p > \tau$
CONDITIONS	$u^2 = \frac{6\tau}{C^2(p-\tau)}$	$0 \leqslant x < u$ $1 \leqslant \tau \leqslant \tau'$ $\tau' = \frac{p}{1 + \frac{6}{C^2}} = \frac{p}{p_1}$
MOMENT RESULTANT	$m_{x}(x,\tau) = -\frac{1}{2}(2+C^{2})$	$\left(\frac{x}{u^2}\right)\left(\frac{x}{u}\right)^3 + C^2 u^2\left(\frac{x}{u}\right)^2 + \left(3 - \frac{C^2 u^2}{2}\right)\left(\frac{x}{u}\right) - 1$
MEMBRANE RESULTANT		$n_{\varphi} = -1$
DISPLACEMENT	$\sqrt{(p-1)} \left\{ + \frac{\sqrt{6}}{8} C p^2 \left\{ \tan^{-1} \left(\sqrt{p} \right) \right\} \right\}$ $w(x,\tau) = -\frac{p}{2} \left[1 - 2 p \frac{C^2 x^2}{(6 + C^2 x^2)} + \frac{C^2 x^2}{(6 + C^2 x^2)} \right]$	$\frac{6}{c^{2}(p-1)}$ $\frac{1}{6} \left\{ \sqrt{\tau} (p-\tau)^{3/2} - (p-1)^{3/2} \right\} + \frac{3C}{4\sqrt{6}} p \left\{ \sqrt{\tau(p-\tau)} - \frac{1}{\sqrt{\tau}} \right\} - \tan^{-1} \left(\sqrt{\frac{1}{p-1}} \right) \right\} \text{FOR } 0 \leqslant x \leqslant u_{o}$ $\frac{1}{2} \frac{1}{\sqrt{\tau}} \left(\frac{1}{\sqrt{\tau}} \right) + \frac{\sqrt{6}}{8} C p^{2} x \left[\tan^{-1} \left(\frac{Cu}{\sqrt{6}} \right) - \tan^{-1} \left(\frac{Cx}{\sqrt{6}} \right) \right]$ $\frac{C^{2} x}{\sqrt{2} x^{2}} + \frac{3C^{2} u}{4(6 + C^{2} u^{2})} - \frac{3C^{2} x}{4(6 + C^{2} x^{2})} \right] \text{FOR } u_{o} \leqslant x \leqslant u$
VELOCITY	ŵ(τ) = (p	$-\tau \left(\frac{x}{u}\right) = \frac{C}{\sqrt{6}} \frac{(p-\tau)^{3/2}}{\sqrt{\tau}} x$
ACCELERATION	$\ddot{\mathbf{w}}(\tau) = -\frac{\mathbf{x}}{\mathbf{u}}$	$-\left[1+\frac{(p-\tau)\dot{u}}{u}\right]=\frac{1}{2}\left(\frac{x}{u}\right)\left[2+\frac{p}{\tau}\right]$
TIME ⁷ o	AT TIME τ' = P , TRAVELI	NG HINGE u MOVES TO MIDLENGTH x = u = 1
DISPLACEMENT AT REST	HAS	NOT COME TO REST YET

TABLE D-5. SUMMARY; SHORT SHELLS, HIGH LOADING, 4

	SHELL TYPE	PRESSURE LOADING TYPE
TYPE	SHORT C ² < 6	HIGH LOAD $p > 1 + \frac{6}{c^2}$
CONDITIONS	$u^2 = \frac{6\tau}{C^2 \left(p - \tau\right)}$	$u < x \le 1$ $p > \tau$ $1 \le \tau \le \tau'$ $\tau' = \frac{p}{\left(1 + \frac{6}{C^2}\right)} = \frac{p}{p}$
MOMENT RESULTANT		m _X = -1
MEMBRANE RESULTANT		n _{\varphi} = -1
DISPLACEMENT	w ($(\tau) = \frac{1}{2} \left[2p \tau - \tau^2 - p \right]$
VELOCITY		$\dot{\mathbf{w}}(\tau) = \mathbf{p} - \tau$
ACCELERATION		₩ (τ) = -1
TIME _T o	AT TIME $ au' = \frac{P}{P_1}$, TRAVELING THIS REGIME SHRINKS TO ZER	G HINGE u MOVES TO MIDLENGTH x = u = 1 AND
DISPLACEMENT AT REST	HAS	NOT COME TO REST YET

TABLE D-6. SUMMARY, SHORT SHELLS, HIGH LOADING, 5

	SHELL TYPE	PRESSURE LOADING TYPE
ТҮРЕ	short c ² < 6	HIGH LOAD $p > 1 + \frac{6}{C^2}$
CONDITIONS	$p > \tau$ $\tau' \le \tau \le \tau_0$ $\tau' = \frac{c^2}{c^2 + 6}p$	
MOMENT RESULTANT	$m_x = -\left[1 + \frac{c^2}{2}\right]x^3 + c^2x^2 + \left[3 - \frac{c^2}{2}\right]x - 1$	
MEMBRANE RESULTANT		n _{φ} = – 1
DISPLACEMENT	WHERE FOR 0	$ \begin{array}{l} \times \left[p \tau - \frac{1}{2} \frac{\left(c^2 + 2 \right)}{c^2} \tau^2 \right] + E_1 \left(x \right) \\ \leqslant x \leqslant u_0 \ E_1 \ \text{IS GIVEN IN TABLE D-7} \\ < x \leqslant 1 \ E_1 \ \text{IS GIVEN IN TABLE D-8} \end{array} $
VELOCITY	w =	$\left(\frac{3}{2}\right) \times \left[p - \frac{\left(c^2 + 2\right)}{c^2} \tau\right]$
ACCELERATION	$\ddot{w} = -\frac{3}{2} \times \left[\frac{C^2 + 2}{C^2} \right]$	
TIME ₇ o	$\tau_{o} = \left[\frac{c^{2}}{c^{2} + 2}\right] p$	
DISPLACEMENT AT REST	$w(\tau_0) = \frac{3}{4} \left(\frac{c^2}{c^2 + 2}\right) p^2 x + E_1(x)$	WHERE E ₁ WILL BE CALCULATED EITHER by Table D-7 or Table D-8

TABLE D-7. $E_1(x)$ FOR $0 \le x \le u_0$

$$E_{1}(x) = \frac{1}{2}(p-1)\frac{x}{u_{0}} - \frac{3}{4} \times p^{2} \frac{(c^{2}+10)c^{2}}{(c^{2}+6)^{2}} + x \left[\frac{3c^{2}}{(c^{2}+6)^{2}} p^{2} - \frac{c}{2\sqrt{6}}(p-1)^{3/2} + \frac{3c^{2}p^{2}}{4(c^{2}+6)} - \frac{3c}{4\sqrt{6}} p\sqrt{p-1} + \frac{\sqrt{6}}{8} c p^{2} \left\{ tan^{-1} \left(\frac{c}{\sqrt{6}} \right) - tan^{-1} \left(\sqrt{\frac{1}{p-1}} \right) \right\} \right]$$

TABLE D-8. $E_1(x)$ FOR $u_0 \le x \le 1$

$$\begin{split} E_1 \left(x \right) &= -\frac{3}{4} \, x \, p^2 \, \frac{\left(c^2 + p \right) c^2}{\left(c^2 + 6 \right)^2} \, - \frac{p}{2} \Bigg[1 - 2p \, \frac{c^2 x^2}{\left(6 + c^2 x^2 \right)} + p \, \frac{c^4 x^4}{\left(6 + c^2 x^2 \right)^2} \Bigg] \\ &+ \frac{\sqrt{6}}{8} \, C \, p^2 \, x \, \left\{ \tan^{-1} \left(\frac{C}{\sqrt{6}} \right) - \tan^{-1} \left(\frac{C \, x}{\sqrt{6}} \right) \right\} + x \, p^2 \, \left\{ \frac{3c^2}{\left(6 + c^2 \right)^2} - \frac{3c^2 \, x}{\left(6 + c^2 x^2 \right)^2} \right. \\ &+ \frac{3c^2}{4 \left(6 + c^2 \right)} \, - \, \frac{3c^2 \, x}{4 \left(6 + c^2 x^2 \right)} \right\} \end{split}$$

REFERENCES--APPENDIX D

- D-1. Hodge, P. G. Jr., Impact Pressure Loading of Rigid-Plastic Cylindrical Shells, Polytechnic Institute of Brooklyn, PIBAL Report No. 255, May 1954.
- D-2. Hodge, P. G. Jr., "Impact Pressure Loading of Rigid-Plastic Cylindrical Shells," Journal of the Mechanics and Physics of Solids, Vol. 3, 1955, pp. 176-188.

APPENDIX E

CASE D - LONG SHELLS, HIGH LOADING

$$\left(c^2 > 6 \quad , \quad p > 1 + \frac{6}{c^2}\right)$$

LONG SHELLS, HIGH LOADING,
$$\left(c^2 > 6\right)$$
, $p > 1 + \frac{6}{c^2}$

This case is summarized in Tables E-1 through E-7.

Let us examine first the time interval $0 \le \tau \le 1$. Table E-1 (it applies for $0 \le x \le u_0$) and Table E-2 (it applies for $u_0 \le x \le 1$) summarize the results. The pertinent intervals on the yield surface lie along AB and at point B (corner), respectively. The analysis for "short shells under high loading," therefore, applies for times $0 \le \tau \le 1$. Equations (D-36) and (D-37) will be satisfied and hence there will be no violation of the yield locus. Furthermore, the velocity distribution from Equations (D-29) and (D-20) is such that the flow rule is satisfied. Therefore,

$$\dot{\mathbf{w}}(\mathbf{x},\tau) = \frac{(\mathbf{p}-1)}{\mathbf{u}_0} \tau \mathbf{x} \quad \text{for} \quad 0 \le \mathbf{x} \le \mathbf{u}_0$$
 (E-1)

$$\dot{\mathbf{w}}(\mathbf{x},\tau) = (\mathbf{p}-1)\tau$$
 for $\mathbf{u}_0 \leq \mathbf{x} \leq 1$ (E-2)

At time τ = 1 the load is removed. We observe that the analysis of the previous section for the next time interval ($\tau \ge 1$) is only valid for $c^2 < 6$. For long shells, however, $c^2 > 6$.

Hence a new assumption is required as to the ranges on the yield surface. This must be done in association with the fact that in the interval $0 \le \tau \le 1$ the velocity profile is given on Figure E-1 (this figure comes from Figure D-1 applicable to short shells and high loads). Figure E-1 suggests that for $1 \le \tau \le \tau_0$ the logical compatible velocity profile is given by Figure E-2 in such a way that

- 1. at time $\tau = 1, y = 0$
- 2. at time $\tau = 1$, $u = u_0$ and the range AD has disappeared.

Based on the previous assumptions we must solve the equilibrium equation in three intervals for $1 \le \tau \le \tau_0$, and account for initial and boundary conditions.

- 1. For times $1 \le \tau \le \tau_1$
 - a. For $0 \le x \le y$ (Range AD, Figure A-3, Table A-1)

$$\dot{\mathbf{w}} = \mathbf{0} \tag{E-3}$$

$$\dot{\mathbf{w}}^{\mathbf{w}} \geq 0 \tag{E-4}$$

$$\mathbf{m}_{\mathbf{x}} = -1 \tag{E-5}$$

$$\frac{1}{2c^2} \mathbf{n}_{x}^{"} + \mathbf{n}_{\phi} + \mathbf{p} - \ddot{\mathbf{w}} = 0 \tag{E-6}$$

$$p = 0 (E-7)$$

b. For $y \le x \le u$ (Range AB, Figure A-3, Table A-1)

$$n_{\phi} = -1 \tag{E-8}$$

$$\dot{\mathbf{w}} \geq 0$$
 (E-9)

$$\dot{\mathbf{w}}^{"} = 0 \tag{E-10}$$

$$\frac{1}{2c^2}m_{x}^{"} + n_{\phi} + p - \ddot{w} = 0$$
 (E-11)

$$p = 0 (E-12)$$

c. For $u \leq x \leq 1$ (Point B, Figure A-3, Table A-1)

$$n_{\phi} = -1 \tag{E-13}$$

$$\mathbf{m}_{\mathbf{x}} = 1 \tag{E-14}$$

$$\dot{\mathbf{w}} \geq 0 \tag{E-15}$$

$$\dot{\mathbf{w}}^{"} \leq 0 \tag{E-16}$$

$$\frac{1}{2c^2}m_{x}^{"} + n_{\phi} + p - \dot{w} = 0$$
 (E-17)

$$p = 0 (E-18)$$

We know that at time τ = 1, when the pressure load ceases to act (see Tables D-5 and D-6), the initial conditions are

1. For
$$0 \le x \le u_0 = \sqrt{\frac{6}{c^2(p-1)}}$$

$$\dot{\mathbf{w}}(\mathbf{x},1) = \frac{(\mathbf{p}-1)}{\mathbf{u}_0}\mathbf{x}$$
 (E-18a)

$$w(x,1) = \frac{1}{2} \frac{(p-1)}{u_0} x$$
 (E-18b)

2. For
$$u_0 \le x \le 1$$

$$\dot{\mathbf{w}}(\mathbf{x}, \mathbf{1}) = \mathbf{p} - \mathbf{1}$$
 (E-19a)

$$w(x,1) = \frac{1}{2} (p-1)$$
 (E-19b)

We now examine the time interval $\tau \geq 1$. The space interval is subdivided in three segments

1.
$$0 \le x \le y$$
,

2.
$$y \le x \le u$$
, and

3.
$$u \leq x \leq 1$$

Both y and u will be defined later.

FIRST INTERVAL $0 \le x \le y$

The equilibrium equation yields

$$n_{\phi} = \ddot{w} \tag{E-20}$$

Since
$$\dot{\mathbf{w}} = 0$$
 (E-21)

for all times $\tau \, \geq \, 1,$ however, this means that

$$\ddot{\mathbf{w}} = 0 \tag{E-22}$$

and, hence,

$$n_{\phi} = 0 \tag{E-23}$$

and integrating Equation (E-21) once with time

$$w = C_1(x) \tag{E-24}$$

Hence,

$$w = \frac{1}{2} \frac{(p-1)}{u_0} x$$
 (E-25)

In summary, for $0 \le x \le y$

$$m_{\chi} = -1 \tag{E-26}$$

$$\mathbf{n}_{\perp} = \mathbf{0} \tag{E-27}$$

$$\ddot{\mathbf{w}} = \mathbf{0} \tag{E-28}$$

$$w = \frac{1}{2} \frac{(p-1)}{u_0} x$$
 (E-30)

and y has not been determined.

SECOND INTERVAL $y \le x \le u$

The equilibrium equation yields

$$\frac{1}{2c^{2}n_{x}^{*}} = 1 + \tilde{w}$$
 (E-31)

Since by Equation (E-10) $\dot{\mathbf{w}}$ = 0, the velocity profile must be linear in x.

Assume

$$\dot{\mathbf{w}} = \dot{\mathbf{A}}(\tau)\mathbf{x} + \dot{\mathbf{B}}(\tau) \tag{E-32}$$

Hence,

$$\ddot{\mathbf{w}} = \ddot{\mathbf{A}}(\tau)\mathbf{x} + \ddot{\mathbf{B}}(\tau) \tag{E-33}$$

Hence,

$$\frac{1}{2c^2}m_x^{"} = 1 + \ddot{A}(\tau)x + \ddot{B}(\tau)$$
 (E-34)

Integrating once with respect to x

$$\frac{1}{2c^2}m_{x}' = \frac{\ddot{A}(\tau)}{2}x + (\ddot{B}(\tau)+1)x + D(\tau)$$
 (E-35)

and once more

$$\frac{1}{2c^2} m_x = \frac{1}{6} \ddot{A}(\tau) x^3 + \frac{1}{2} (1 + \ddot{B}(\tau)) x^2 + D(\tau) x + E(\tau)$$
 (E-36)

At x = y the moment resultant and shearing forces must agree, i.e.,

$$\frac{1}{2c^2}m'(y,\tau) = \frac{\ddot{A}(\tau)}{2}y^2 + (1+\ddot{B}(\tau))y + D(\tau) = 0$$
 (E-37)

$$\frac{1}{2c^2} m_{\chi}(y,\tau) = \frac{1}{6} \ddot{A}(\tau) y^3 + \frac{1}{2} (1 + \ddot{B}(\tau)) y^2 + D(\tau) y + E(\tau) = -\frac{1}{2c^2}$$
 (E-38)

Also at x = u

$$\frac{1}{2c^2}m'(u,\tau) = \frac{1}{2}\ddot{A}(\tau)u^2 + (1+\ddot{B}(\tau))u + D(\tau) = 0$$
 (E-39)

$$\frac{1}{2c^2} m_{\mathbf{x}}(\mathbf{u}, \tau) = \frac{1}{6} \ddot{\mathbf{A}}(\tau) \mathbf{u}^3 + \frac{1}{2} (1 + \ddot{\mathbf{B}}(\tau)) \mathbf{u}^2 + \mathbf{D}(\tau) \mathbf{u} + \mathbf{E}(\tau) = -\frac{1}{2c^2}$$
 (E-40)

Solving Equation (E-37) for $2c^2D$, we get

$$2c^{2}D = -c^{2}\ddot{A} y^{2} - 2c^{2}(1+\ddot{B})y$$
 (E-41)

Solving Equation (E-38) for $2c^2E$ and replacing $2c^2D$ from Equation (E-41), we obtain

$$2c^{2}E = -1 + \frac{2}{3}c^{2}\ddot{A}y^{3} + c^{2}(1+\ddot{B})y^{2}$$
(E-42)

Replacing $2c^2D$ in Equation (E-39) from Equation (E-41) we obtain

$$c^{2}\ddot{A}(u^{2}-y^{2}) + 2c^{2}(1+\ddot{B})(u-y) = 0$$
 (E-43)

Replacing $2c^2D$ and $2c^2E$ in Equation (E-40) from Equations (E-41) and (E-42), we obtain a second relation

$$\frac{1}{3}c^{2}\ddot{A}\left[u^{3}-3uy^{2}+2y^{3}\right]+c^{2}(1+\ddot{B})(u-y)^{2}=2$$
(E-44)

or

$$\frac{1}{3}c^{2}\ddot{A}(u-y)(u^{2}+yu-2y^{2}) + c^{2}(1+\ddot{B})(u-y)^{2} = 2$$
 (E-45)

Substituting $c^2(1+\ddot{B})(u-y)$ from Equation (E-43) in Equation (E-45) we finally obtain the value of \ddot{A} , i.e.,

$$\ddot{A} = -\frac{12}{c^2} \frac{1}{(u-y)^3}$$
 (E-46)

Hence (for u ≠ y)

$$2(1+\ddot{B}) = -\ddot{A}(u+y)$$

which, in view of Equation (E-46), becomes

$$2(1+\ddot{B}) = -(u+y)x(\frac{-12}{c^2})\frac{1}{(u-y)^3}$$

or

$$1 + \ddot{B} = \frac{6}{c^2} \frac{(u+y)}{(u-y)^3}$$
 (E-47)

Therefore,

$$\ddot{A} = -\frac{12}{c^2} \frac{1}{(u-y)^3}$$
 (E-48)

$$1 + \ddot{B} = \frac{6}{c^2} \frac{(u+y)}{(u-y)^3}$$
 (E-49)

$$\ddot{B} = \frac{6}{c^2} \frac{(u+y)}{(u-y)^3} -1$$
 (E-50)

$$2c^{2}D = \frac{-12uy}{(u-y)^{3}}$$
 (E-51)

$$2c^{2}E = -\frac{(y+u)(y^{2}-4yu+u^{2})}{(u-y)^{3}}$$
(E-52)

Also by Equation (E-41)

$$2c^{2}D = -\frac{12uy}{(u-y)^{3}}$$
 (E-53)

By Equation (E-42)

$$2c^{2}E = -1 + \frac{2y^{2}[3u-y]}{(u-y)^{3}}$$
(E-54)

$$m_{\mathbf{x}}(\mathbf{x},\tau) = \frac{1}{(\mathbf{u}-\mathbf{y})^3} \left[-4\mathbf{x}^3 + 6(\mathbf{u}+\mathbf{y})\mathbf{x}^2 - 12\mathbf{u}\mathbf{y}\mathbf{x} - (\mathbf{y}+\mathbf{u})(\mathbf{y}^2 - 4\mathbf{y}\mathbf{u} + \mathbf{u}^2) \right]$$
 (E-55)

$$m_{x}'(x,\tau) = \frac{1}{(u-y)^{3}} \left[-12x^{2} + 12(u+y)x - 12uy \right]$$
 (E-56)

and

$$m_{x}^{"}(x,\tau) = \frac{12}{(u-y)^{3}}[-2x+(u+y)]$$
 (E-57)

We observe, that, in fact

$$m_{x}(y,\tau) + -1$$

$$m_{\mathbf{x}}^{\dagger}(\mathbf{y},\tau) + 0$$

$$m_{\chi}(u,\tau) + 1$$

$$m_{\mathbf{X}}^{\prime}(\mathbf{u},\tau) + 0$$

$$m_{\mathbf{x}}^{"}(\mathbf{y},\tau) + \frac{12}{(\mathbf{u}-\mathbf{y})^2}$$

$$m_{x}^{"}(u,\tau) + -\frac{12}{(u-y)^{2}}$$

Before we can combine all three ranges, we examine the third interval (u \leq x \leq 1).

THIRD INTERVAL ($u \le x \le 1$)

The equilibrium equation yields

$$\ddot{\mathbf{w}} = -1 \tag{E-58}$$

Integrating once we get

$$\dot{\mathbf{w}}(\tau) = -\tau + \mathbf{C}_{1} \tag{E-59}$$

NSWC TR 86-32C

However, by the initial condition in velocity [see Equation (E-18)] at τ = 1, we have

$$[-\tau + c_1] = p - 1$$
 (E-60)

Hence,

$$C_1 = p (E-61)$$

and
$$\dot{\mathbf{w}}(\mathbf{x},\tau) = \mathbf{p} - \mathbf{\tau}$$
 (E-62)

Integrating again

$$w(x,\tau) = p\tau - \frac{1}{2}\tau^2 + D_1$$
 (E-63)

By Equation (E-19) at $\tau = 1$

$$D_1 = -\frac{1}{2}p ag{E-64}$$

Leaving Equation (E-63) with the known constant D_1 we observe that the displacement must agree with that one obtained from the second interval for all times $\tau > 1$. We must also retrieve the value of the displacement at time $\tau = 1$ as given by Equation (E-19), i.e.,

$$w(x,1) = \frac{1}{2}(p-1)$$
 (E-65)

and, therefore, \mathbf{D}_1 takes on the value already given by Equation (E-64) and

$$w(x,\tau) = p\left(\tau - \frac{1}{2}\right) - \frac{1}{2}\tau^2$$
 (E-66)

It can easily be seen that for the time range of interest, $w(x,\tau)$ is non-negative.

We proceed to match solutions in the three intervals for $\tau \geq 1$, since

1.
$$0 \le x \le y$$
 $\dot{w} = 0$ (E-67)

2.
$$y \le x \le u$$
 $\dot{w} = \dot{A}(\tau)x + \dot{B}(\tau)$ (E-68)

3.
$$u \le x \le 1$$
 $\dot{w} = p - \tau$ (E-69)

For
$$x = y$$
 $\dot{A}(\tau)y + \dot{B}(\tau) = 0$ (E-70)

For
$$x = u$$
 $\dot{A}(\tau)u + \dot{B}(\tau) = p - \tau$ (E-71)

Therefore,

$$\dot{\mathbf{B}}(\tau) = -\dot{\mathbf{A}}(\tau)\mathbf{y} \tag{E-72}$$

$$\dot{A}(\tau)(u-y) = p - \tau \tag{E-73}$$

$$\dot{A}(\tau) = \frac{(p-\tau)}{(u-y)} \tag{E-74}$$

Differentiate Equation (E-74) with time

$$\dot{A}(\tau) = -\frac{1}{(u-y)} - \frac{(p-\tau)}{(u-y)^2} \frac{d}{d\tau}(u-y)$$
 (E-75)

By Equation (E-48) however and setting $\theta = u-y$

$$\ddot{A} = -\frac{12}{c^2} \frac{1}{(u-y)^3}$$
, i.e., (E-76)

we get

$$-\frac{1}{\theta} - \frac{(p-\tau)}{\theta^2} \frac{d}{d\tau} \theta = -\frac{12}{c^2} \frac{1}{\theta^3}$$
 (E-77)

or

$$-\frac{(\mathbf{p}-\tau)}{\theta^2}\frac{\mathrm{d}}{\mathrm{d}\tau}\theta = \frac{1}{\theta} - \frac{12}{c^2}\frac{1}{\theta^3} \tag{E-78}$$

$$\frac{d}{d\tau} \left[\frac{1}{2} (u-y)^2 \right] = \frac{1}{(p-\tau)} \left[\frac{12}{c^2} - (u-y)^2 \right]$$
 (E-79)

$$\frac{d}{d\tau}(u-y) = -\frac{\theta^2}{(p-\tau)} \left[\frac{1}{\theta} - \frac{12}{c^2} \frac{1}{\theta^3} \right] = -\frac{\theta}{(p-\tau)} + \frac{12}{c^2} \frac{1}{(p-\tau)} \frac{1}{\theta}$$
 (E-80)

$$\frac{d}{d\tau}(u-y) = \frac{1}{(p-\tau)} \left[\frac{12}{c^2} \frac{1}{(u-y)} - (u-y) \right]$$
 (E-81)

$$-(p-\tau)\theta \frac{d}{d\tau}\theta = \theta^2 - \frac{12}{c^2}$$
 (E-82)

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left(\frac{1}{2} \theta^2 \right) = \left(\theta^2 - \frac{12}{c^2} \right) \left[\frac{-1}{(p-\tau)} \right] = \frac{\left(\frac{12}{c^2} - \theta^2 \right)}{(p-\tau)}$$
(E-83)

$$\frac{d\left(\frac{1}{2}\theta^{2}\right)}{\left(\frac{12}{c^{2}}-\theta^{2}\right)} = \frac{d\tau}{(p-\tau)} = -\frac{1}{2} \frac{d(\theta^{2})}{\left(\theta^{2}-\frac{12}{c^{2}}\right)}$$
(E-84)

Set $\phi = \theta^2$

$$-\frac{1}{2}\frac{d\phi}{\left(\phi - \frac{12}{c^2}\right)} = \frac{d\tau}{p-\tau} \tag{E-85}$$

$$-\frac{1}{2}\log_{e}\left|\phi - \frac{12}{c^{2}}\right| = -\log_{e}\left|p - \tau\right| + \log_{e}D$$
 (E-86)

When
$$\tau = 1$$
, $\phi = \theta^2 = (u-y)^2 = u_0^2 = \frac{6}{c^2(p-1)}$ (E-87)

$$-\frac{1}{2}\log_{e}\left|\frac{6}{c^{2}(p-1)} - \frac{12}{c^{2}}\right| = -\log_{e}\left|p-1\right| + \log_{e}D$$
 (E-88)

$$\log_e p = \log_e \left| p-1 \right| - \frac{1}{2} \log_e \left| \frac{6}{c^2} \left(\frac{1}{(p-1)} - 2 \right) \right| =$$

$$\log_{e} \left| p-1 \right| - \frac{1}{2} \log_{e} \left| \frac{6}{c^{2}} \frac{(3-2p)}{(p-1)} \right|$$
 (E-89)

$$-\frac{1}{2}\log_{e}\left|\phi - \frac{12}{c^{2}}\right| = \log_{e}\left|\frac{(p-1)}{(p-\tau)}\right| - \frac{1}{2}\log_{e}\left|\frac{6}{c^{2}}\frac{(3-2p)}{(p-1)}\right|$$
 (E-90)

$$\frac{1}{2}\log_{e}\left|\frac{\frac{6}{c^{2}}\left(\frac{3-2p}{p-1}\right)}{\left(\phi - \frac{12}{c^{2}}\right)}\right| = \log_{e}\left|\frac{(p-1)}{(p-\tau)}\right|$$
 (E-91)

$$\sqrt{\frac{\frac{6}{c^2} \frac{(3-2p)}{(p-1)}}{\binom{\phi}{c} - \frac{12}{c^2}}} = \frac{(p-1)}{(p-\tau)}$$
 (E-92)

or

$$(u-y)^2 = \phi = \theta^2 = \frac{6}{c^2} \left[2 - (2p-3) \frac{(p-\tau)^2}{(p-1)^3} \right]$$
 (E-93)

Therefore,

$$(u-y)^2 = \frac{6}{c^2} \left[2 - \frac{(p-\tau)^2}{(p-1)^3} (2p-3) \right]$$

Taking the positive root only since u > y we obtain

$$\theta(\tau) = u - y = \frac{\sqrt{6}}{c} \left[2 - \frac{(p - \tau)^2}{(p - 1)^3} (2p - 3) \right]^{\frac{1}{2}}$$
(E-94)

Equation (E-50) gives B

$$\ddot{B} = \frac{6}{c^2} \frac{(u+y)}{(u-y)^3} - 1$$

Also Equation (E-71) relates $\dot{A}(\tau)$ to $\dot{B}(\tau)$

$$\dot{A}(\tau)u + \dot{B}(\tau) = p - \tau \tag{E-95}$$

Differentiating (E-71) with respect to time τ we obtain

$$\ddot{A}(\tau)u + \dot{A}(\tau)\frac{du}{d\tau} + \ddot{B} = -1 \tag{E-96}$$

By Equation (E-74)

$$\dot{A}(\tau) = \frac{(p-\tau)}{(u-y)}$$
 (E-96a)

By Equation (E-48)

$$\ddot{A}(\tau) = -\frac{12}{c^2} \frac{1}{(u-v)^3}$$
 (E-96b)

Replace $\ddot{A}(\tau)$ from Equation (E-48), $\dot{A}(\tau)$ from Equation (E-74), and \ddot{B} from Equation (E-50) in the differential Equation (E-74)

$$-\frac{12}{c^2}\frac{u}{(u-y)^3} + \frac{(p-\tau)}{(u-y)}\frac{du}{d\tau} + \frac{6}{c^2}\frac{(u+y)}{(u-y)^3} - 1 = -1$$
 (E-97)

or

$$\frac{(p-\tau)}{(u-y)} \frac{du}{d\tau} = \frac{6}{c^2} \frac{1}{(u-y)^2}$$
 (E-98)

or

$$du = \frac{\sqrt{6}}{c} \frac{d\tau}{(p-\tau) \left[2 - \frac{(2p-3)}{(p-1)^3} (p-\tau)^2\right]^{\frac{1}{2}}} =$$

$$\frac{6}{c^{2}} \frac{d\tau}{(p-\tau) \frac{\sqrt{6}}{c} \left[2 - \frac{(2p-3)}{(p-1)^{3}} (p-\tau)^{2}\right]^{\frac{1}{2}}}$$

and by Equation (E-93)

$$du = \frac{6}{c^2} \frac{d\tau}{(p-\tau)\theta}$$
 (E-99)

By Equation (E-93) θ is given in terms of τ

$$\theta = \frac{\sqrt{6}}{c} \left[2 - \frac{(2p-3)}{(p-1)^3} (p-\tau)^2 \right]^{\frac{1}{2}}$$

$$\frac{d\theta}{d\tau} = \frac{(2p-3)}{(p-1)^3} \frac{\left(\frac{\sqrt{6}}{c}\right)_{(p-\tau)}}{\left[2 - \frac{(2p-3)}{(p-1)^3}(p-\tau)^2\right]^{\frac{1}{2}}} = \left(\frac{6}{c^2}\right) \left(\frac{(2p-3)}{(p-1)^3}\right) \frac{(p-\tau)}{\theta}$$
(E-100)

$$\frac{d\theta}{d\tau} = \left(\frac{6}{c^2}\right) \frac{(2p-3)}{(p-1)^3} \frac{(p-\tau)}{\theta}$$
 (E-101)

and since

$$d\theta = \frac{(2p-3)}{(p-1)^3} \frac{6}{c^2} (p-\tau) \frac{d\tau}{\theta}$$
 (E-102)

$$d\tau = \frac{\theta d\theta}{(p-\tau)} = \frac{(p-1)^3}{(2p-3)} = \frac{c^2}{6}$$
 (E-103)

and

$$du = \frac{6}{c^2} \frac{1}{(p-\tau)} \frac{1}{\theta} \frac{\theta d\theta}{(p-\tau)} \frac{(p-1)^3}{(2p-3)} \frac{c^2}{\theta} = \frac{1}{(p-\tau)^2} \frac{(p-1)^3}{(2p-3)} d\theta$$
 (E-104)

and solving Equation (E-94) for $(p-\tau)^2$ and replacing it in Equation (E-104), we get

$$(p-\tau)^2 = \frac{(p-1)^3}{(2p-3)} \left[2 - \frac{c^2}{6} \theta^2 \right]$$
 (E-105)

$$\frac{1}{(p-\tau)^2} = \frac{(2p-3)}{(p-1)^3} \frac{1}{\left[2 - \frac{c^2}{6}\theta^2\right]}$$
 (E-106)

$$du = \frac{(2p-3)}{(p-1)^3} \frac{1}{\left[2 - \frac{c^2}{6}\theta^2\right]} \frac{(p-1)^3}{(2p-3)} d\theta = \frac{d\theta}{\left[2 - \frac{c^2}{6}\theta^2\right]} \frac{-6}{c^2} \left[\frac{12}{c^2} - \theta^2\right]$$
 (E-107)

$$du = \frac{6}{c^2} \left(\frac{d\theta}{\left(\frac{12}{c^2} - \theta^2\right)} \right) = \left(\frac{6}{c^2} \right) \frac{c}{4\sqrt{3}} \left[\frac{1}{\left(\frac{2\sqrt{3}}{c} + \theta\right)} + \frac{1}{\left(\frac{2\sqrt{3}}{c} - \theta\right)} \right] d\theta =$$

$$\frac{\sqrt{3}}{2c} \left[\frac{1}{\left(\theta + \frac{2\sqrt{3}}{c}\right)} - \frac{1}{\left(\theta - \frac{2\sqrt{3}}{c}\right)} \right] d\theta$$
 (E-107a)

$$u = \frac{\sqrt{3}}{2c} \log_e \left| \frac{\left(\theta + \frac{2\sqrt{3}}{c}\right)}{\left(\theta - \frac{2\sqrt{3}}{c}\right)} \right| + C_1$$
 (E-107b)

at
$$\tau = 1$$
, $\theta = u_0$, $C_1 = u_0 - \frac{\sqrt{3}}{2c} \log_e \left| \frac{\left(u_0 + \frac{2\sqrt{3}}{c} \right)}{\left(u_0 - \frac{2\sqrt{3}}{c} \right)} \right|$ (E-107c)

Hence,

$$u = u_o + \frac{\sqrt{3}}{2c} log_e \left| \frac{\left(\theta + \frac{2\sqrt{3}}{c}\right) \left(u_o - \frac{2\sqrt{3}}{c}\right)}{\left(\theta - \frac{2\sqrt{3}}{c}\right) \left(u_o + \frac{2\sqrt{3}}{c}\right)} \right|$$
 (E-107d)

Integrating once with respect to θ we get

$$u = \frac{6}{c^2} \int \frac{d\theta}{\left[\frac{12}{c^2} - \theta^2\right]} + C_1 = \frac{6}{c^2} \times \frac{c}{4\sqrt{3}} \log_e \left\{ \frac{\left(\theta + \frac{2\sqrt{3}}{c}\right)}{\left(\theta - \frac{2\sqrt{3}}{c}\right)} \right\} + C_1 =$$

$$\frac{\sqrt{3}}{2c} \log_{e} \left\{ \left| \frac{\left(\theta + \frac{2\sqrt{3}}{c}\right)}{\left(\theta - \frac{2\sqrt{3}}{c}\right)} \right| \right\} + C_{1}$$
(E-108)

However, at $\tau = 1$, $\theta = u_0 = \frac{\sqrt{6}}{c\sqrt{p-1}}$ and $u = u_0$ (since y = 0 and $\theta = u-y$)

$$u_{o} - \frac{\sqrt{3}}{2c} \log_{e} \left\{ \left| \frac{\left(u_{o} + \frac{2\sqrt{3}}{c} \right)}{\left(u_{o} - \frac{2\sqrt{3}}{c} \right)} \right| \right\} = C_{1}$$
 (E-109)

Hence,

$$u = u_o + \frac{\sqrt{3}}{2c} \log_e \left\{ \left| \frac{\left(\theta + \frac{2\sqrt{3}}{c}\right) \left(u_o - \frac{2\sqrt{3}}{c}\right)}{\left(\theta - \frac{2\sqrt{3}}{c}\right) \left(u_o + \frac{2\sqrt{2}}{c}\right)} \right| \right\}$$
(E-110)

and

$$y = u - \theta = u_o - \theta + \frac{\sqrt{3}}{2c} \log_e \left\{ \left| \frac{\left(\theta + \frac{2\sqrt{3}}{c}\right) \left(u_o - \frac{2\sqrt{3}}{c}\right)}{\left(\theta - \frac{2\sqrt{3}}{c}\right) \left(u_o + \frac{2\sqrt{3}}{c}\right)} \right| \right\}$$
(E-111)

When u = 1, $\tau = \tau_1$, and $\theta = \theta_1$ and hence

$$u - u_o = 1 - u_o = \frac{\sqrt{3}}{2c} \log_e \left\{ \left| \frac{\left(\theta_1 + \frac{2\sqrt{3}}{c}\right) \left(u_o - \frac{2\sqrt{3}}{c}\right)}{\left(\theta_1 - \frac{2\sqrt{3}}{c}\right) \left(u_o + \frac{2\sqrt{3}}{c}\right)} \right| \right\}$$
 (E-112)

or

$$e^{\frac{2c}{\sqrt{3}}(1-u_o)} = \frac{\left|\frac{\left(\theta_1 + \frac{2\sqrt{3}}{c}\right)}{\left(\theta_1 - \frac{2\sqrt{3}}{c}\right)}\right| \left|\frac{\left(u_o - \frac{2\sqrt{3}}{c}\right)}{\left(u_o + \frac{2\sqrt{3}}{c}\right)}\right|}{\left(u_o + \frac{2\sqrt{3}}{c}\right)}$$
(E-113)

and by Equation (E-100)

$$\theta_1 = \frac{\sqrt{6}}{c} \left[2 - \frac{(2p-3)}{(p-1)^3} (p-\tau_1)^2 \right]^{\frac{1}{2}}$$
 (E-114)

$$\left| \frac{\left(\mathbf{u_o} + \frac{2\sqrt{3}}{c} \right)}{\left(\mathbf{u_o} - \frac{2\sqrt{3}}{c} \right)} \right| e^{\frac{2\mathbf{c}}{\sqrt{3}} \left(1 - \mathbf{u_o} \right)} = \left| \frac{\left(\mathbf{e_1} + \frac{2\sqrt{3}}{c} \right)}{\left(\mathbf{e_1} - \frac{2\sqrt{3}}{c} \right)} \right|$$
(E-115)

Also

$$e^{\frac{2c}{\sqrt{3}}\left(1-u_o\right)} = \frac{\left(\theta_1 + \frac{2\sqrt{3}}{c}\right)}{\left(\theta_1 - \frac{2\sqrt{3}}{c}\right)} \frac{\left(u_o - \frac{2\sqrt{3}}{c}\right)}{\left(u_o + \frac{2\sqrt{3}}{c}\right)}$$
(E-116)

for
$$\theta_1 > \frac{2\sqrt{3}}{c}, u_0 > \frac{2\sqrt{3}}{c}$$

$$\left(\theta_{1} + \frac{2\sqrt{3}}{c}\right) \left[\frac{\left(u_{o} + \frac{2\sqrt{3}}{c}\right)}{\left(u_{o} - \frac{2\sqrt{3}}{c}\right)} \right] e^{\frac{2c}{\sqrt{3}}\left(1 - u_{o}\right)} = \theta_{1} - \frac{2\sqrt{3}}{c}$$
 (E-117)

$$\theta_{1} \left[\frac{\left(u_{o} + \frac{2\sqrt{3}}{c}\right)}{\left(u_{o} - \frac{2\sqrt{3}}{c}\right)} e^{\frac{2c\left(1-u_{o}\right)}{\sqrt{3}}} - 1 \right] =$$

$$\frac{2\sqrt{3}}{c} \left[1 + \frac{\left(u_o + \frac{2\sqrt{3}}{c} \right)}{\left(u_o - \frac{2\sqrt{3}}{c} \right)} e^{\frac{2c\left(1 - u_o \right)}{\sqrt{3}}} \right]$$
 (E-118)

$$\theta_{1} = \frac{2\sqrt{3}}{c} \left\{ \frac{\left(u_{o} + \frac{2\sqrt{3}}{c}\right)}{\left(u_{o} - \frac{2\sqrt{3}}{c}\right)} e^{\frac{2c(1-u_{o})}{\sqrt{3}}} + 1}{\left(\frac{\left(u_{o} + \frac{2\sqrt{3}}{c}\right)}{c}\right)} e^{\frac{2c(1-u_{o})}{\sqrt{3}}} - 1 \right\}$$

$$\left\{ \frac{\left(u_{o} + \frac{2\sqrt{3}}{c}\right)}{\left(u_{o} - \frac{2\sqrt{3}}{c}\right)} e^{\frac{2c(1-u_{o})}{\sqrt{3}}} - 1 \right\}$$
(E-119)

Multiply top and bottom with $e^{-c(1-u_0)/\sqrt{3}}$ to obtain

$$\theta_{1} = \frac{2\sqrt{3}}{c} \left[\frac{u_{o} \cosh\left(\frac{c(1-u_{o})}{\sqrt{3}}\right) + \frac{2\sqrt{3}}{c} \sinh\left(\frac{c(1-u_{o})}{\sqrt{3}}\right)}{u_{o} \sinh\left(\frac{c(1-u_{o})}{\sqrt{3}}\right) + \frac{2\sqrt{3}}{c} \cosh\left(\frac{c(1-u_{o})}{\sqrt{3}}\right)} \right]$$
(E-120)

For the general case of any θ , using Equation (E-110) we obtain

$$\theta = \frac{2\sqrt{3}}{c} \frac{\left[u_o \cosh\left(\frac{c(u-u_o)}{\sqrt{3}}\right) + \frac{2\sqrt{3}}{c} \sinh\left(\frac{c(u-u_o)}{\sqrt{3}}\right) \right]}{\left[u_o \sinh\left(\frac{c(u-u_o)}{\sqrt{3}}\right) + \frac{2\sqrt{3}}{c} \cosh\left(\frac{c(u-u_o)}{\sqrt{3}}\right) \right]}$$
(E-121)

Equation (E-120) can be written in the alternative form

$$\theta_{1} = \frac{2\sqrt{3}}{c} \frac{\left[\coth\left(\frac{c\left(1-u_{o}\right)}{\sqrt{3}}\right) + \frac{2\sqrt{3}}{cu_{o}}\right]}{\left[1 + \frac{2\sqrt{3}}{cu_{o}} \coth\left(\frac{c\left(1-u_{o}\right)}{\sqrt{3}}\right)\right]}$$
(E-122)

Solving Equation (E-100) for $\boldsymbol{\tau}_1$ we obtain

$$\tau_1 = p - \sqrt{\frac{(p-1)^3}{(2p-3)} \left\{ 2 - \frac{c}{6} \theta_1^2 \right\}}$$
 (E-123)

We distinguish three cases

1.
$$2 - \frac{c^2}{6}\theta_1^2 = 0$$
 (it will turn out that $p = \frac{3}{2}$ and $c^2 > 12$) (E-124)

2.
$$2 - \frac{c^2}{6}\theta_1^2 > 0$$
 for $p > \frac{3}{2}$ (E-125)

3.
$$2 - \frac{c^2}{6}\theta_1^2 < o$$
 for $p < \frac{3}{2}$ (E-126)

CASE 1

We now examine case $\theta = \frac{2\sqrt{3}}{c}$

The differential Equation (E-82) reduces to

$$- (p-\tau)\theta \frac{d\theta}{d\tau} = \theta^2 - \frac{12}{c^2} = 0$$
 (E-127)

or

$$\frac{d\theta}{d\tau} = 0 ag{E-128}$$

Since $p \neq \tau$ and $\theta \neq 0$

Equation (E-98) reduces to

$$du = \frac{6}{c^2} \frac{1}{(p-\tau)} \frac{d\tau}{\theta}$$
 (E-129)

when θ is a constant, i.e.,

$$du = \frac{6}{c^2} \frac{1}{\frac{2\sqrt{3}}{c}} \frac{d\tau}{(p-\tau)} = \frac{\sqrt{3}}{c} \frac{d\tau}{(p-\tau)}$$
 (E-130)

and integrating

$$u = \frac{\sqrt{3}}{c} \left| \log_e \left| p - \tau \right| + \log_e C \right|$$
 (E-131)

At time $\tau = 1$, $u = u_0$, i.e.,

$$u_o = \frac{\sqrt{3}}{c} \left| \log_e \left| p-1 \right| + \log_e C \right| \tag{E-132}$$

i.e.,

$$u = \frac{\sqrt{3}}{c} \left\{ \log_e \left| \frac{(p-\tau)}{(p-1)} \right| \right\} + u_0$$

And

$$y = u - \theta = u_{0} - \theta + \frac{\sqrt{3}}{c} \log_{e} \left| \frac{(p-\tau)}{(p-1)} \right| =$$

$$\frac{\sqrt{6}}{c\sqrt{p-1}} - \frac{2\sqrt{3}}{c} + \frac{\sqrt{3}}{c} \log_{e} \left| \frac{(p-\tau)}{(p-1)} \right|$$
(E-133)

However, at $\tau = 1$, y = 0. This leads to $p = \frac{3}{2}$ and since

$$p > 1 + \frac{6}{c^2}$$
 (E-134)

$$c^2 > 12 \tag{E-135}$$

By Equation (E-74)

$$\dot{A}(\tau) = \frac{(p-\tau)}{u-y} = \frac{(p-\tau)}{\theta} = \frac{c(p-\tau)}{2\sqrt{3}}$$
(E-136)

By Equation (E-48)

$$\ddot{A}(\tau) = -\frac{12}{c^2} \frac{1}{(u-v)^3} = -\frac{12}{c^2} \frac{1}{\theta^3} = -\frac{c}{2\sqrt{3}}$$
 (E-137)

By Equation (D-72)

$$\dot{B}(\tau) = -\dot{A}(\tau)y = -\frac{c(p-\tau)}{2\sqrt{3}}y$$
 (E-138)

By Equation (E-50)

$$\ddot{B} = \frac{6}{c^2} \frac{(u+y)}{(u-y)^3} - 1 = \frac{c}{4\sqrt{3}} \left[2u_0 - \theta + \frac{2\sqrt{3}}{c} \log_e \left| \frac{p-\tau}{p-1} \right| \right] - 1$$
 (E-139)

Therefore,

$$p = \frac{3}{2}, p > \tau, c^2 > 12$$
 (E-140)

$$u_0 = \frac{\sqrt{6}}{c\sqrt{p-1}}$$
 (E-141)

$$\theta = \frac{2\sqrt{3}}{c} \tag{E-142}$$

$$u = u_0 + \frac{\sqrt{3}}{c} \log_e \left| \frac{(p-\tau)}{(p-1)} \right|$$
 (E-143)

$$y = u_0 - \theta + \frac{\sqrt{3}}{c} \log_e \left| \frac{(p-\tau)}{(p-1)} \right|$$
 (E-144)

and adding and subtracting θ inside the square brackets \ddot{B} can be written as

$$\ddot{B} = \frac{c}{2\sqrt{3}}y - \frac{1}{2}$$
 (E-145)

Since

$$\dot{B}(\tau) = -\frac{c}{2\sqrt{3}}(p-\tau)y \tag{E-146}$$

$$\ddot{B} = -\frac{c}{2\sqrt{3}} \left[-y + (p-\tau) \frac{d}{d\tau} y \right] = \frac{c}{2\sqrt{3}} y - \frac{1}{2}$$
 (E-147)

as above.

Also by Equation (E-68) the velocity profile in the second interval $y \leq x \leq u \ \ \text{becomes}$

$$\dot{w} = \dot{A}(\tau)x + \dot{B}(\tau) = \frac{c}{2\sqrt{3}}(p-\tau)(x-y)$$
 (E-148)

and the acceleration

$$\ddot{\mathbf{w}} = \ddot{\mathbf{A}}(\tau)\mathbf{x} + \ddot{\mathbf{B}}(\tau) = -\frac{\mathbf{c}}{2\sqrt{3}}\mathbf{x} + \frac{\mathbf{c}}{2\sqrt{3}}\mathbf{y} - \frac{1}{2} = \frac{\mathbf{c}}{2\sqrt{3}}(-\mathbf{x} + \mathbf{y}) - \frac{1}{2}$$
 (E-149)

When u reaches the midpoint, let the time taken be indicated by $\boldsymbol{\tau}_{1}.$ Then we will have

$$u_1 - u_0 = \frac{\sqrt{3}}{c} \log_e \left| \frac{(p - \tau_1)}{(p - 1)} \right|$$
 (E-150)

i.e.,

$$\left| \frac{\left(\mathbf{p} - \tau_1 \right)}{\left(\mathbf{p} - 1 \right)} \right| = e^{\frac{\mathbf{c}}{\sqrt{3}} \left(1 - \mathbf{u}_0 \right)}$$
(E-151)

i.e.,

$$\left| \begin{pmatrix} p-\tau_1 \end{pmatrix} \right| = \left[p-1 \right] e^{\frac{c}{\sqrt{3}} \left(1-u_0 \right)}$$
(E-152)

Ιf

$$p > \tau_1$$
 (E-153)

$$p - (p-1) e^{\frac{-c}{\sqrt{3}}(1-u_0)} = \tau_1$$
 (E-154)

$$p \left[1 - e^{\frac{c}{\sqrt{3}} (1 - u_0)} \right] + e^{\frac{c}{\sqrt{3}} (1 - u_0)} = \tau_1$$
 (E-155)

If, on the other hand, $p < \tau_1$

$$\tau_1 - p = (p-1) e^{\frac{c}{\sqrt{3}}(1-u_0)}$$
(E-156)

$$\tau_1 = p + (p-1) e^{\frac{c}{\sqrt{3}}(1-u_o)} = p\left(1 + e^{\frac{c}{\sqrt{3}}(1-u_o)}\right) - e^{\frac{c}{\sqrt{3}}(1-u_o)}$$
 (E-157)

Hence,

if
$$p > \tau_1$$
, $\tau_1 = p - (p-1) e^{\frac{-c}{\sqrt{3}}(1-u_0)}$ (E-158)

if
$$p < \tau_1, \tau_1 = p + (p-1) e^{\frac{-c}{\sqrt{3}}(1-u_0)}$$
 (E-159)

and always $\tau_1 \ge 1$

It turns out that the conditions

$$p > \tau_1 > 1$$
 (E-160)

reduce to

$$p > p - (p-1) e^{\frac{-c}{\sqrt{3}}(1-u_0)} > 1$$
 (E-161)

or

$$\frac{c}{\sqrt{3}} \begin{pmatrix} 1-u_0 \end{pmatrix}$$
0 < e which is satisfied (E-162)

and

$$e^{\frac{c}{\sqrt{3}}(1-u_0)} < 1 \tag{E-163}$$

which cannot be satisfied for $0 < u_0 \le 1$

Hence for $p=\frac{3}{2},\ p>\tau_1$, and $\tau_1\geq 1$, the postulated profile violates the flow rule. While for $p=\frac{3}{2},\ p<\tau_1$, and $\tau_1\geq 1$

$$\frac{\mathbf{c}}{\mathbf{e}^{\sqrt{3}}} \begin{pmatrix} 1 - \mathbf{u}_{0} \end{pmatrix} > 0 \tag{E-164}$$

is satisfied for

$$0 \leq u_0 \leq 1$$
.

Equation (E-148) for the velocity profile and Equation (E-9) ($\dot{w} \geq 0$) imply that the inequality is violated and, therefore, a different velocity profile must be assumed for this case. This particular case will not be further studied here, since other considerations, such as inclusion of nonlinearities, have priority.

CASE 2

Corresponding to a value of θ , call it θ_1 (for time τ = τ_1) and u = 1, there exists a value of y, call it y_1 , such that

$$y_1 = 1 - \theta_1$$
 (E-165)

1.e.,

$$0 < 1 - \theta_1 = y_1 < 1$$
 (E-166)

with

$$1 > \theta_1 > 0$$
 (E-167)

By Equations (E-125) and (E-167), therefore,

$$\theta_1 < \min \left\{1, \frac{2\sqrt{3}}{c}\right\}$$
 (E-168)

with $p > \frac{3}{2}$

CASE 3

Corresponding to Equations (E-126) and (E-167) we must have

$$\frac{2\sqrt{3}}{c} < \theta_1 < 1 \tag{E-169}$$

for $p < \frac{3}{2}$

Consequently, we combine cases 2 and 3, and treat them as a single case, i.e., for

$$p \neq \frac{3}{2}$$
 and $p > \tau$.

We proceed now to calculate the displacement distribution for times τ such that $1 \le \tau \le \tau_1$ and τ_1 are given by Equation (E-123). For this purpose, we observe that at time τ = 1 the displacement has an initial value, depending on the position of the point x at which it is considered. This initial value is given by the following table:

INTERVAL	INITIAL CONDITION ON DISPLACEMENT W
0 < x < y	$\frac{1}{2} \frac{(p-1)}{u_0} x$
y < x < u _o	$\frac{1}{2} \frac{(p-1)}{u_0} x$
u _o < x < u	$\frac{1}{2}(p-1)$
u < x < 1	$\frac{1}{2}(p-1)$

Therefore

1. For $0 \le x \le y$ and $\tau \ge 1$, and by Equation (E-21)

$$w(x,\tau) = \frac{1}{2} \frac{(p-1)}{u_0} x$$
 (E-170)

2. For $y \le x \le u_0$ and $\tau \ge 1$

$$w(x,\tau) = \frac{1}{2} \frac{(p-1)}{u_0} x + \int_{\tau=1}^{\tau} \dot{w} d\tau$$
 (E-171)

However, by Equations (E-32), (E-74), and (E-72)

$$\dot{\mathbf{w}}(\mathbf{x},\tau) = (\mathbf{p}-\tau) \frac{(\mathbf{x}-\mathbf{y})}{(\mathbf{u}-\mathbf{y})} \tag{E-172}$$

and, therefore, Equation (E-171) becomes

$$w(x,\tau) = \frac{1}{2} \frac{(p-1)}{u_0} x + \frac{c^2}{6} \frac{(p-1)^3}{(2p-3)} \left[(x-u_0) (\theta-u_0) + \frac{1}{2} (\theta^2 - u_0^2) - \frac{\sqrt{3}}{2c} (\theta-u_0) \log_e \left| \frac{\left(u_0 - \frac{2\sqrt{3}}{c} \right)}{\left(u_0 + \frac{2\sqrt{3}}{c} \right)} \right| - \frac{\sqrt{3}}{2c} \left| \left(\theta + \frac{2\sqrt{3}}{c} \right) \log_e \left| \left(\theta + \frac{2\sqrt{3}}{c} \right) \right| - \left(u_0 + \frac{2\sqrt{3}}{c} \right) \log_e \left| \left(u_0 + \frac{2\sqrt{3}}{c} \right) \right| - \frac{\left(u_0 - \frac{2\sqrt{3}}{c} \right) \log_e \left| \left(u_0 - \frac{2\sqrt{3}}{c} \right) \right|}{\left(u_0 - \frac{2\sqrt{3}}{c} \right) \log_e \left| \left(u_0 - \frac{2\sqrt{3}}{c} \right) \right|} \right| \right]$$

$$= \frac{1}{2} \frac{(p-1)^3}{(2p-3)} \left[(x-u_0) (\theta-u_0) + \frac{1}{2c} \frac{(p-1)^3}{(2p-3)} \right] - \frac{1}{2c} \frac{(p-1)^3}{(2p-3)} \left| \left(u_0 - \frac{2\sqrt{3}}{c} \right) \log_e \left| \left(u_0 - \frac{2\sqrt{3}}{c} \right) \right| \right| \right]$$

$$= \frac{1}{2} \frac{(p-1)^3}{(2p-3)} x + \frac{c^2}{6} \frac{(p-1)^3}{(2p-3)} \left[(x-u_0) (\theta-u_0) + \frac{2\sqrt{3}}{c} \right] \log_e \left| \left(u_0 - \frac{2\sqrt{3}}{c} \right) \right| \right|$$

- 3. For $u_0 \le x \le u$ and $\tau \ge 1$, the expression for $w(x,\tau)$ is like the one given by Equation (E-173) except that instead of $\frac{1}{2} \frac{(p-1)}{u_0} x$, the first term is $\frac{1}{2}(p-1)$.
 - 4. For $u \le x \le 1$ and $\tau \ge 1$ we must proceed as follows:

At time $\tau = \tau^*$, when $x = u = u^*$ and $\theta = \theta(u) = \theta(u^*) = \theta^*$ the displacements in the third and fourth intervals must agree. This means that

$$w(u^*,\tau^*) = \int_{\tau=1}^{\tau=\tau^*} \dot{w} d\tau + C_1$$
 (E-174)

However, by Equation (E-62)

$$w(u^*,\tau^*) = \int_{\tau=1}^{\tau=\tau^*} (p-\tau)d\tau + C_1$$
 (E-175)

and also

$$w(u^{*},\tau^{*}) = \frac{1}{2}(p-1) + \frac{c^{2}}{6} \frac{(p-1)^{3}}{(2p-3)} \left[(u^{*}-u_{o}) (\theta^{*}-u_{o}) + \frac{1}{2}(\theta^{*}-u_{o}^{2}) - \frac{\sqrt{3}}{2c} (\theta^{*}-u_{o}^{2}) \log_{e} \left| (u_{o} - \frac{2\sqrt{3}}{c}) \right| - \frac{\sqrt{3}}{2c} \left\{ (\theta^{*} + \frac{2\sqrt{3}}{c}) \log_{e} \left| (\theta^{*} + \frac{2\sqrt{3}}{c}) \right| - \left(u_{o} + \frac{2\sqrt{3}}{c} \right) \log_{e} \left| (\theta^{*} + \frac{2\sqrt{3}}{c}) \right| - \left(\theta^{*} - \frac{2\sqrt{3}}{c} \right) \log_{e} \left| (\theta^{*} - \frac{2\sqrt{3}}{c}) \right| + \left(u_{o} - \frac{2\sqrt{3}}{c} \right) \log_{e} \left| (u_{o} - \frac{2\sqrt{3}}{c}) \right| \right\} \right] = p(\tau^{*}-1) - \frac{1}{2}(\tau^{*}-1) + C_{1}$$
(E-176)

Equation (E-176) determines C_1 in terms of $\theta*$, u*, and $\tau*$.

Therefore,

$$w(x,\tau) = \frac{1}{2}(p-1) + p(\tau-\tau^*) - \frac{1}{2}(\tau^2-\tau^{*2}) + \frac{1}{2}(\theta^{*2}-\theta^{*2}) + \frac{1}{2}(\theta^{*2}-\theta^{*2}) - \frac{1}{2}(\theta^{*2}-\theta^{*2}) - \frac{\sqrt{3}}{2c}(\theta^{*2}-\theta^{*2})\log_{e}\left|\frac{\left(u_{o} - \frac{2\sqrt{3}}{c}\right)}{\left(u_{o} + \frac{2\sqrt{3}}{c}\right)}\right| - \frac{\sqrt{3}}{2c}\left\{\left(\theta^{*2} + \frac{2\sqrt{3}}{c}\right)\log_{e}\left|\left(\theta^{*2} + \frac{2\sqrt{3}}{c}\right)\right| - \left(\theta^{*2} + \frac{2\sqrt{3}}{c}\right)\log_{e}\left|\left(\theta^{*2} + \frac{2\sqrt{3}}{c}\right)\right| + \left(u_{o} - \frac{2\sqrt{3}}{c}\right)\log_{e}\left|\left(u_{o} + \frac{2\sqrt{3}}{c}\right)\right|\right\}\right\}$$

$$(E-177)$$

The previous analysis is valid until the first hinge circle, located by u (see Figure E-2) reaches the midpoint, i.e., until $u(\tau_1) = 1$. Let the corresponding time be denoted by τ_1 and the corresponding values of y, θ , and u be denoted by y_1 , θ_1 , and u_1 (=1), respectively, i.e.,

$$y_1 = y(\tau_1)$$
 (E-178)

$$u_1 = u(\tau_1) = 1$$
 (E-179)

$$\theta_1 = \theta(\tau_1) \tag{E-180}$$

and θ_1 will be given by Equation (E-113), (E-120), or (E-122), while τ_1 will be obtained by Equation (E-114) or (E-123). Equation (E-111) defines y_1 . At that instant in time, the velocity profile is given by Figure E-3. A different assumption must be made for the motion to continue. This must be so, since $y(\tau)$, where the other hinge is located, varies with time and has not reached to midpoint yet. We must also satisfy all geometrical inequalities, such as $y \ge 0$ and $0 \le \theta \le 1$ for the solution to be valid.

2.
$$\tau_1 \leq \tau \leq \tau_0$$

The analysis of long shells under low loading (Appendix C) applies in this case. We observe that the initial conditions are different then the ones in Appendix C. Both velocity and displacement profiles must agree for times $\tau = \tau_1$, which represent our starting time for this interval.

We consider two intervals.

a. For $0 \le x \le y$ (along AD on the yield surface)

we must have

$$\dot{\mathbf{w}} = \mathbf{0} \tag{E-181}$$

$$\dot{\mathbf{w}}^{-} = 0 \tag{E-182}$$

$$\mathbf{m}_{\mathbf{y}} = -1 \tag{E-183}$$

$$p = 0 (E-184)$$

and by Equation (E-3)

$$\dot{\mathbf{w}}(\mathbf{x}, \tau_1) = 0$$
 (E-185)

and by Equation (E-25)

$$w(x,\tau_1) = \frac{1}{2} \frac{(p-1)}{u_0} x$$
 (E-186)

Also the equilibrium equation is

$$\frac{1}{2c^2}m_x'' + n_\phi + p - \ddot{w} = 0$$
 (E-187)

Therefore,

$$n_{h} = 0$$
 (E-188)

$$\ddot{\mathbf{w}} = \dot{\mathbf{w}} = \mathbf{0} \tag{E-189}$$

and, hence. displacement is independent of time τ , but dependent on location x, i.e.,

$$w(x,\tau) = C(x) \tag{E-190}$$

This constant is the value of the displacement from the previous time range, i.e.,

$$C(x) = \frac{1}{2} \frac{(p-1)}{u_0} x$$
 (E-191)

Thus,

$$w(x,\tau) = \frac{1}{2} \frac{(p-1)}{u_0} x$$
 (E-192)

b. For $y \le x \le 1$ (along AB on yield surface)

we must have

$$\dot{\mathbf{w}} \geq 0 \tag{E-193}$$

$$\dot{\mathbf{w}}^{"} = 0 \tag{E-194}$$

$$n_{\phi} = -1 \tag{E-195}$$

$$^{-1} \leq \mathbf{m}_{\mathbf{x}} \leq 1 \tag{E-196}$$

$$p = 0 (E-197)$$

with initial condition

$$\dot{\mathbf{w}}(\mathbf{x}, \tau_1) = (\mathbf{p} - \tau_1) \boxed{ \begin{array}{c} \mathbf{x} - \mathbf{y} \ (\tau_1) \\ \hline \mathbf{1} - \mathbf{y} \ (\tau_1) \end{array} }$$
(E-198)

We must satisfy the equilibrium equation

$$\frac{1}{2c^2}m_x'' + n_\phi + p - \ddot{w} = 0$$
 (E-199)

and assuming a distribution of velocity of the form

$$\dot{\mathbf{w}}(\mathbf{x},\tau) = \dot{\mathbf{A}}\mathbf{x} + \dot{\mathbf{B}} \tag{E-200}$$

$$\ddot{\mathbf{w}}(\mathbf{x},\tau) = \ddot{\mathbf{A}}\mathbf{x} + \ddot{\mathbf{B}} \tag{E-201}$$

and, hence, replacing w in Equation (E-199) we get

$$\frac{1}{2c^2}m_x'' - 1 = \ddot{A}x + \ddot{B}$$
 (E-202)

As before, integrating we obtain

$$m_{x}' = 2c^{2}x + 2c^{2}\left[\frac{1}{2}\ddot{A}x^{2} + \ddot{B}x\right] + C_{1}$$
 (E-203)

$$m_x = c^2 x^2 + c^2 \left[\frac{1}{3} \ddot{a} x^3 + \ddot{b} x^2 \right] + C_1 x + C_2$$
 (E-204)

We must satisfy the following boundary conditions

$$m_{\chi}(y,\tau) = -1$$
 (E-205)

$$m_{\chi}'(y,\tau) = 0$$
 (E-206)

$$m_{\chi}(1,\tau) = 1$$
 (E-207)

$$m_{X}'(1,\tau) = 0$$
 (E-208)

Therefore,

$$c^{2}\left[\frac{1}{3}\ddot{A}y^{3} + (1+\ddot{B})y^{2}\right] + C_{1}y + C_{2} = -1$$
 (E-209)

$$c^{2}\left[\ddot{A} y^{2} + 2(1+\ddot{B})y\right] + C_{1} = 0$$
 (E-210)

$$c^{2}[\ddot{A} + 2(1+\ddot{B})] + C_{1} = 0$$
 (E-211)

$$c^{2}\left[\frac{1}{3}\ddot{A} + (1+\ddot{B})\right] + C_{1} + C_{2} = 1$$
 (E-212)

After similar operations, we obtain

$$\ddot{A} = -2(1+\ddot{B})\frac{(y-1)}{(y^2-1)} = -2(1+\ddot{B})\frac{1}{(1+y)}$$
 (E-213)

and for $y \neq 1$

$$1 + \ddot{B} = -\frac{1}{2}(1+y)\ddot{A}$$
 (E-214)

and

$$\ddot{A} = -\frac{12}{c^2} \frac{1}{(1-v)^3}$$
 (E-215)

$$1 + \ddot{B} = \frac{6}{c^2} \frac{(1+y)}{(1-y)^3}$$
 (E-216)

and

$$c_1 = -\frac{12}{(1-y)^3}y \tag{E-217}$$

$$C_2 = 1 - \frac{2(1-3y)}{(1-y)^3}$$
 (E-218)

The bending moment distribution, Equation (E-204), becomes

$$m_x = 1 + \frac{1}{(1-y)^3} \left[-4x^3 + 6(1+y)x^2 - 12y x - 2(1-3y) \right]$$
 (E-219)

When x + y (for $\tau > \tau_1$) the velocity vanishes, i.e.,

$$\dot{\mathbf{w}}(\mathbf{y},\tau) = 0 \tag{E-220}$$

or

$$\dot{A}(\tau)y + \dot{B}(\tau) = 0 \tag{E-221}$$

However, y is a function of time τ . Similar differentiations, as with Equation (C-36) gives

$$\ddot{A}y + \dot{A}\dot{y} + \ddot{B} = 0$$
 (E-222)

or

$$\dot{A} = \frac{1}{\dot{y}} - \frac{6}{c^2} \frac{1}{\dot{y}(1-y)^2}$$
 (E-223)

and the differential equation

$$\frac{\ddot{y}}{\dot{y}} = 0 \tag{E-224}$$

or
$$\ddot{y} = 0$$
 (E-225)

since $\dot{y} \neq 0$

Therefore, y(\tau) is a linear function of time \tau and such that at time \tau = \tau_1 it equals y_1 (y(\tau_1))

$$y(\tau) = E_1(\tau - \tau_1) + E_2$$
 (E-226)

$$E_2 = y(\tau_1) = y_1$$
 (E-227)

$$\dot{y}(\tau) = E_1 \tag{E-228}$$

Comparing the x coefficient of Equation (E-198), which in fact is \dot{A} , with Equation (E-223), for times τ = τ_1 , we have

$$\frac{6}{c^2} \left[\frac{c^2}{6} - \frac{1}{(1-y_1)^2} \right] \frac{1}{\dot{y}_1} - \frac{(p-\tau_1)}{(1-y_1)}$$
 (E-229)

or

$$\dot{y}_1 = \frac{6}{c^2} \left[\frac{c^2}{6} - \frac{1}{(1-y_1)^2} \right] \frac{(1-y_1)}{(p-\tau_1)}$$
 (E-230)

But

$$E_1 = \dot{y} = \dot{y}_1$$
 (E-231)

We also observe that the velocity of the hinge circle is given by

$$\dot{y}(\tau) = \dot{y}_1 = E_1 = \left[1 - \frac{6}{c^2} \frac{1}{(1-y_1)^2}\right] \frac{(1-y_1)}{(p-\tau_1)}$$
(E-232)

Also at time τ = τ_1 the velocities for all y \leq x \leq 1 must agree, i.e.,

$$\dot{w}(x,\tau_1) = \dot{A}(\tau_1)x + \dot{B}(\tau_1) = (p-\tau_1)\frac{(x-y_1)}{(1-y_1)}$$
(E-233)

i.e.,

$$\dot{A}\left(\tau_{1}\right) = \frac{\left(\mathbf{p}-\tau_{1}\right)}{\left(\mathbf{1}-\mathbf{y}_{1}\right)} \tag{E-234}$$

$$\dot{\mathbf{B}}(\tau_1) = -\frac{(\mathbf{p}-\tau_1)}{(1-\mathbf{y}_1)}\mathbf{y}_1 \tag{E-235}$$

and, therefore,

$$y(\tau) = \left[1 - \frac{6}{c^2} \frac{1}{(1-y_1)^2}\right] \frac{(1-y_1)}{(p-\tau_1)} (\tau - \tau_1) + y_1$$
 (E-236)

and the velocity distribution becomes

$$\dot{\mathbf{w}} = \dot{\mathbf{A}}(\tau)\mathbf{x} + \dot{\mathbf{B}}(\tau) = \dot{\mathbf{A}}(\tau)(\mathbf{x}-\mathbf{y}) =$$

$$\frac{\left(1-y_{1}\right)\left[1-\frac{6}{c^{2}}\frac{1}{\left(1-y_{1}\right)^{2}}\right]\left[\left(x-y\right)-\frac{6}{c^{2}}\frac{\left(x-y\right)}{\left(1-y\right)^{2}}\right]}{\left(1-y_{1}\right)\left[1-\frac{6}{c^{2}}\frac{1}{\left(1-y_{1}\right)^{2}}\right]}$$
(E-237)

Except the case when either x = y or p = τ_1 , the velocity becomes zero when

$$1 - \frac{\sqrt{6}}{c} = y$$

Thus

$$\dot{w}(x,\tau) = \frac{(1-y_1)}{(1-y)^2} \begin{bmatrix} c^2(1-y)^2 - 6 \\ c^2(1-y_1)^2 - 6 \end{bmatrix} (p-\tau_1)(x-y)$$
(E-238)

The acceleration is given by

$$\ddot{\mathbf{w}} = \frac{(\mathbf{p} - \tau_1)}{(1 - \mathbf{y}_1) \left[1 - \frac{6}{c^2} \frac{1}{(1 - \mathbf{y}_1)^2} \right]} \left[-\dot{\mathbf{y}} - \frac{6}{c^2} \frac{d}{d\tau} \left\{ \frac{(\mathbf{x} - \mathbf{y})}{(1 - \mathbf{y})^2} \right\} \right] =$$

$$- \left[1 + \frac{6}{c^2} \left\{ \frac{2(\mathbf{x} - \mathbf{y})}{(1 - \mathbf{y})^3} - \frac{1}{(1 - \mathbf{y})^2} \right\} \right]$$
(E-239)

For consistency $\dot{w} \ge 0$. Since $1 > y_1$, 1 > y, and x > y, we must also have

$$p \ge \tau_1 \tag{E-240}$$

$$1 - \frac{6}{c^2} \frac{1}{(1-v)^2} > 0$$
 (E-241)

and
$$1 - \frac{6}{c^2} \frac{1}{(1-y_1)^2} > 0$$
 (E-242)

i.e.,
$$y < 1 - \frac{\sqrt{6}}{c}$$
 (E-243)

$$y_1 < 1 - \frac{\sqrt{6}}{6}$$
 (E-244)

At

$$y = 1 - \frac{\sqrt{6}}{c}$$
 (E-245)

the velocity becomes zero. The time taken, indicated by τ_0 , is given by

$$\tau_{0} = \tau_{1} + \frac{\left\{1 - \frac{\sqrt{6}}{c} - y_{1}\right\} \left(p - \tau_{1}\right)}{\left\{1 - \frac{6}{c^{2}} \frac{1}{\left(1 - y_{1}\right)^{2}}\right\} \left(1 - y_{1}\right)} = \tau_{1} + \frac{\left(p - \tau_{1}\right) \left(1 - y_{1}\right)}{\left[1 - y_{1} + \frac{\sqrt{6}}{c}\right]}$$
(E-246)

Table E-6 summarizes the results for the interval $\tau_1 \le \tau \le \tau_0$ and points lying in $0 \le x \le y$.

The objective here is to obtain the displacement distribution in the interval $y \le x \le 1$ for times $\tau \ge \tau_1$. To do this we observe that at x = y the displacements must be equal. Therefore

$$w(y,\tau) = \frac{1}{2} \frac{(p-1)}{u_0} y(\tau_1) + \int_{\tau=\tau_1}^{\tau} \dot{w} d\tau$$
 (E-247)

Using Equation (E-237) written in a different format

$$\int_{\tau_1}^{\tau_2} \dot{\mathbf{w}} d\tau = \frac{(1-y_1)(p-\tau_1)}{\left[c^2(1-y_1)^2-6\right]} \int_{\tau_1}^{\tau} \left[c^2 - \frac{6}{(1-y)^2}\right] (\mathbf{x}-\mathbf{y}) d\tau$$
 (E-248)

we get

$$A_1 = x-y_1 + \left[1 - \frac{6}{c^2(1-y_1)^2}\right] \frac{(1-y_1)}{(p-\tau_1)} \tau_1$$
 (E-249)

$$B_{1} = \left[1 - \frac{6}{c^{2}} \frac{1}{(1-y_{1})^{2}}\right] \frac{(1-y_{1})}{(p-\tau_{1})}$$
 (E-250)

$$C_1 = 1 - y_1 + \left[1 - \frac{6}{c^2} \frac{1}{(1-y_1)^2}\right] \frac{(1-y_1)}{(p-\tau_1)}$$
 (E-251)

$$D_{1} = \frac{(1-y_{1})(p-\tau_{1})}{\left[c^{2}(1-y_{1})^{2}-6\right]}$$
 (E-252)

where
$$C_1 - A_1 = 1 - x$$
 (E-253)

Finally, Equation (E-247) assumes the form

$$w(y,\tau) = \frac{1}{2} \frac{(p-1)}{u_0} y(\tau_1) + D_1 \left[c^2 \middle| A_1(\tau - \tau_1) - \frac{1}{2} B_1(\tau^2 - \tau_1^2) \middle| + \left(\frac{1}{B_1} \log_e \left| \frac{(C_1 - B_1 \tau)}{(C_1 - B_1 \tau_1)} \middle| + \frac{(1-x)}{B_1} \left(\frac{1}{(C_1 - B_1 \tau)} - \frac{1}{(C_1 - B_1 \tau_1)} \middle| \right) \right]$$
(E-254)

and the displacement at which the velocity vanishes is given by

$$w(y_0, \tau_0)$$
, where $y_0 = 1 - \frac{\sqrt{6}}{c}$

and τ_{O} is given by Equation (E-246).

Table E-7 summarizes these results.

RANGE AB
ON YIELD SURFACE

POINT B ON YIELD SURFACE

FIGURE E-1. VELOCITY PROFILE FOR LONG SHELLS AND HIGH PRESSURES FOR IN 0 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 1

FIGURE E-2. ASSUMED VELOCITY PROFILE FOR LONG SHELLS AND HIGH LOADS FOR 1 $\leqslant \tau \leqslant \tau_{\rm o}$

FIGURE E-3. VELOCITY PROFILE FOR LONG SHELLS AND HIGH PRESSURES $\left(p \neq \frac{3}{2}\right)$ FOR $1 \leqslant \tau \leqslant \tau_1$

TABLE E-1. SUMMARY, LONG SHELLS, HIGH LOADING, 1

	SHELL TYPE	AB PRESSURE LOADING TYPE
TYPE	LONG C ² > 6	HIGH LOAD $p > 1 + \frac{6}{C^2}$
CONDITIONS	$u_0^2 = \frac{6}{C^2(p-1)}$	$0 \le \tau \le 1$ $0 \le x \le u_0$
MOMENT RESULTANT	$m_{x}(x,\tau) = 2\left(\frac{x}{u_{o}} - 1\right)^{3} + 1$ $= 2\left(\frac{x}{u_{o}}\right)^{3} - 6\left(\frac{x}{u_{o}}\right)^{3}$	or $\frac{x}{u_0}\right)^2 + 6\left(\frac{x}{u_0}\right) - 1$ POINTS ALONG AB ON
MEMBRANE RESULTANT		n _{\varphi} = -1
DISPLACEMENT	v	$u(\mathbf{x},\tau) = \frac{1}{2} \frac{(\mathbf{p}-1)}{u_0} \tau^2 \mathbf{x}$
VELOCITY		$\dot{\mathbf{w}} = \frac{(\mathbf{p} - 1)}{\mathbf{u_o}} \mathbf{\tau} \mathbf{x}$
ACCELERATION		$\ddot{\mathbf{w}} = \frac{(\mathbf{p} - 1)}{\mathbf{u_o}} \mathbf{x}$
TIME ₇₀		N/A
DISPLACEMENT AT REST	HAS	NOT COME TO REST YET

TABLE E-2. SUMMARY, LONG SHELLS, HIGH LOADING, 2

	SHELL TYPE	PRESSURE LOADING TYPE
TYPE	LONG C ² > 6	HIGH LOAD $p > 1 + \frac{6}{C^2}$
CONDITIONS	$u_0^2 = \frac{6}{C^2(p-1)}$	0 ≤ τ ≤ 1 u ₀ < x ≤ 1
MOMENT RESULTANT		m _x = 1 POINT B ON
MEMBRANE RESULTANT		n _φ = -1
DISPLACEMENT		$w = \frac{1}{2} (p-1) \tau^2$
VELOCITY		$\dot{\mathbf{w}} = (\mathbf{p} - 1) \mathbf{\tau}$
ACCELERATION	·	₩ = p-1
TIME ₇₀		N/A
DISPLACEMENT AT REST	HAS	NOT COME TO REST YET

TABLE E-3. SUMMARY, LONG SHELLS, HIGH LOADING, 3

	SHELL TYPE	AB PRESSURE LOADING TYPE
TYPE	LONG C ² >6	HIGH p > 1 + $\frac{6}{C^2}$ (p $\neq \frac{3}{2}$)
CONDITIONS	$u_o = \sqrt{\frac{6}{C^2(p-1)}}$	$1 \leqslant \tau \leqslant \tau_1$ $\tau_1 = p - \sqrt{\frac{(p-1)^3}{(2p-3)}} \left\{ 2 - \frac{C^2}{6} \Theta_1^2 \right\}$ ABLE E-4, ATTACHMENT 1
MOMENT RESULTANT		m _x = -1
MEMBRANE RESULTANT		$^{n}arphi=0$
DISPLACEMENT		$w = \frac{1}{2} \frac{(p-1)}{u_0} x$
VELOCITY		w = 0
ACCELERATION		₩ = 0
TIME ₇₀		N/A
DISPLACEMENT AT REST	HAS N	IOT COME TO REST YET

TABLE E-4. SUMMARY, LONG SHELLS, HIGH LOADING, 4

<u> </u>	SHELL TYPE	AB PRESSURE LOADING TYPE
TYPE	LONG C ² >6 SEE	HIGH LOAD $p > 1 + \frac{6}{C^2} (p \neq \frac{3}{2})$
CONDITIONS	ATTACHMENT 1. $y \le x \le u$ $1 \le \tau \le \tau_1$ $\Theta^2 = \frac{6}{C^2} \left[2 - \frac{(2p-3)}{(p-1)^3} (p - \frac{c^2}{(2p-3)}) \right]$	'
MOMENT RESULTANT	$m_{x}(x,\tau) = \frac{1}{(u-y)^{3}} \left[-4x^{3} + 6 (u+y)^{3} - (y+u)(y^{2} - 4yu + u^{2}) \right]$	$\frac{2\sqrt{3}}{C} < \theta_1 < 1. \text{ if } p < \frac{3}{2}$
MEMBRANE RESULTANT		n _φ = −1
DISPLACEMENT	SE	E ATTACHMENT 2.
VELOCITY	ŵ	$= (p-\tau) \frac{(x-y)}{\Theta}$
ACCELERATION	w = (-	$\frac{6}{C^2}$) $\frac{1}{(u-y^3)} \left[u+y-2x \right] - 1$
TIME ₇₀		N/A
DISPLACEMENT AT REST	HAS NO	OT COME TO REST YET .

TABLE E-4. ATTACHMENT 1

$$\Theta_{1} = \frac{2\sqrt{3}}{C} \left[\frac{\coth\left(\frac{C(1-u_{o})}{\sqrt{3}}\right) + \frac{2\sqrt{3}}{Cu_{o}}}{\left[1 + \frac{2\sqrt{3}}{Cu_{o}} \coth\left(\frac{C(1-u_{o})}{\sqrt{3}}\right)\right]} \right] \qquad u = u_{o} + \frac{2\sqrt{3}}{C} \log_{\theta} \left[\frac{\left(\Theta + \frac{2\sqrt{3}}{C}\right) \left(u_{o} - \frac{2\sqrt{3}}{C}\right)}{\left(\Theta - \frac{2\sqrt{3}}{C}\right) \left(u_{o} + \frac{2\sqrt{3}}{C}\right)} \right]$$

$$y = u_{o} - \Theta + \frac{\sqrt{3}}{2C} \log_{\theta} \left[\frac{\left(\Theta + \frac{2\sqrt{3}}{C}\right) \left(u_{o} - \frac{2\sqrt{3}}{C}\right)}{\left(\Theta - \frac{2\sqrt{3}}{C}\right) \left(u_{o} + \frac{2\sqrt{3}}{C}\right)} \right]$$

TABLE E-4. ATTACHMENT 2

$$\begin{aligned} \mathbf{y} < \mathbf{x} \leqslant \mathbf{u}_o \\ \mathbf{w}(\mathbf{x},\tau) &= \frac{1}{2} \frac{(\mathbf{p}-1)}{\mathbf{u}_o} \mathbf{x} + \\ &+ \frac{C^2}{6} \frac{(\mathbf{p}-1)^3}{(2\mathbf{p}-3)} \left[(\mathbf{x} - \mathbf{u}_o)(\Theta - \mathbf{u}_o) + \frac{1}{2} (\Theta^2 - \mathbf{u}_o^2) - \frac{\sqrt{3}}{2C} (\Theta - \mathbf{u}_o) \log_e \left| \left(\mathbf{u}_o - \frac{2\sqrt{3}}{C} \right) \right| - \\ &\frac{\sqrt{3}}{2C} \left\{ \left(\Theta + \frac{2\sqrt{3}}{C} \right) \log_e \left| \left(\Theta + \frac{2\sqrt{3}}{C} \right) \right| - \left(\mathbf{u}_o + \frac{2\sqrt{3}}{C} \right) \log_e \left| \left(\mathbf{u}_o + \frac{2\sqrt{3}}{C} \right) \right| - \\ &\left(\Theta - \frac{2\sqrt{3}}{C} \right) \log_e \left| \left(\Theta - \frac{2\sqrt{3}}{C} \right) \right| + \left(\mathbf{u}_o - \frac{2\sqrt{3}}{C} \right) \log_e \left| \left(\mathbf{u}_o - \frac{2\sqrt{3}}{C} \right) \right| \right\} \end{aligned}$$

$$w(x,\tau) = \frac{1}{2} (p-1) + \frac{C^2}{6} \frac{(p-1)^3}{(2p-3)} \left[(x-u_0)(\Theta-u_0) + \frac{1}{2} (\Theta^2-u_0^2) - \frac{\sqrt{3}}{2C} (\Theta-u_0) \log_e \left| \frac{\left(u_0 - \frac{2\sqrt{3}}{C}\right)}{\left(u_0 + \frac{2\sqrt{3}}{C}\right)} \right| - \frac{1}{2} (\Theta^2-u_0^2) + \frac{1}{2} (\Theta^2-u_0^2) - \frac{1}{2} (\Theta^2-u_0^2) \log_e \left| \frac{\left(u_0 - \frac{2\sqrt{3}}{C}\right)}{\left(u_0 + \frac{2\sqrt{3}}{C}\right)} \right| - \frac{1}{2} (\Theta^2-u_0^2) + \frac{1}{$$

$$\frac{\sqrt{3}}{2C} \left\{ \left(\Theta + \frac{2\sqrt{3}}{C} \right) \cdot \log_{e} \left| \left(\Theta + \frac{2\sqrt{3}}{C} \right) \right| - \left(u_{o} + \frac{2\sqrt{3}}{C} \right) \cdot \log_{e} \left| \left(u_{o} + \frac{2\sqrt{3}}{C} \right) \right| - \left(u_{o} - \frac{2\sqrt{3}}{C} \right) \cdot \log_{e} \left| \left(u_{o} - \frac{2\sqrt{3}}{C} \right) \right| \right\} \right\}$$

TABLE E-5. SUMMARY, LONG SHELLS, HIGH LOADING, 5

ТҮРЕ	SHELL TYPE	AB PRESSURE LOADING TYPE
	LONG C ² >6	HIGH $p > 1 + \frac{6}{C^2} \left(p \neq \frac{3}{2} \right)$
CONDITIONS		u ≼ x ≼ 1
MOMENT RESULTANT		m _x = 1
MEMBRANE RESULTANT		n _φ =-1
DISPLACEMENT	SE	E ATTACHMENT 1.
VELOCITY		 =p-τ
ACCELERATION		₩=-1
TIME _{TO}	·	N/A
DISPLACEMENT AT REST	HAS NO	OT COME TO REST YET

TABLE E-5. ATTACHMENT 1

$$\begin{aligned} u < x \leqslant 1 & u = u^* \ at \ \tau = \tau^*, \ \Theta = \Theta^* \\ w(x,\tau) &= \frac{1}{2} \ (p-1) + p \ [\tau - \tau^*] - \frac{1}{2} \ [\tau^2 - \tau^{*2}] + \\ & \frac{C^2}{6} \ \frac{(p-1)^3}{(2p-3)} \left[(u^* - u_o) \ (\Theta^* - u_o) + \frac{1}{2} \ (\Theta^{*2} - u_o^2) - \right. \\ & \left. - \frac{\sqrt{3}}{2C} \ (\Theta^* - u_o) \ \log_e \left| \left(\frac{u_o - \frac{2\sqrt{3}}{C}}{u_o + \frac{2\sqrt{3}}{C}} \right) \right| - \right. \\ & \left. - \frac{\sqrt{3}}{2C} \left\{ \left(\Theta^* + \frac{2\sqrt{3}}{C} \right) \log_e \left| \left(\Theta^* + \frac{2\sqrt{3}}{C} \right) \right| - \left(u_o + \frac{2\sqrt{3}}{C} \right) \log_e \left| \left(u_o + \frac{2\sqrt{3}}{C} \right) \right| - \left. \left(\Theta^* - \frac{2\sqrt{3}}{C} \right) \log_e \left| \left(\Theta^* - \frac{2\sqrt{3}}{C} \right) \right| \right\} \right] \end{aligned}$$

TABLE E-6. SUMMARY, LONG SHELLS, HIGH LOADING, 6

(SHELL TYPE	PRESSURE LOADING TYPE
TYPE	LONG $C^2 > 6$	$HIGH p > 1 + \frac{6}{c^2} \qquad p \neq \frac{3}{2}$
	$y_1 = u_0 - \theta_1 + \frac{\sqrt{3}}{2C} \log_e \left[\frac{\theta_1 + \frac{2\sqrt{3}}{C}}{\theta_1 - \frac{2\sqrt{3}}{C}} \right]$	$\frac{\frac{3}{2} \cdot \left(u_{o} - \frac{2\sqrt{3}}{C} \right)}{\left(u_{o} + \frac{2\sqrt{3}}{C} \right)} \right] \qquad u_{o} = \frac{\sqrt{6}}{C\sqrt{p-1}}$
CONDITIONS	$ \tau_1 \leq \tau \leq \tau_0 $ $ \theta_1 = \frac{2\sqrt{3}}{C} $ $ \left[1 + \frac{2\sqrt{3}}{Cu_0}\right] $	$\frac{1}{1 + \frac{2\sqrt{3}}{Cu_0}}, A = \frac{C(1 - u_0)}{\sqrt{3}}$ $\tau_1 = p - \left\{ \frac{(p-1)^3}{(2p-3)} \left[2 - \frac{C^2}{6} \theta^2 \right] \right\}^{\frac{1}{2}},$
	0 ≤ x ≤	$\begin{cases} y & y \leq 1 - \frac{\sqrt{6}}{C} \end{cases}$
MOMENT RESULTANT		m _x = -1
MEMBRANE RESULTANT		$n_{\varphi} = 0$
DISPLACEMENT	w(x,	$\tau) = \frac{1}{2} \frac{(p-1)}{u_0} \times$
VELOCITY		ŵ = 0
ACCELERATION		w = 0
TIME ⁷ o	τ _o = τ ₁	$+\frac{\left(p-\tau_{1}\right)\left(1-\nu_{1}\right)}{\left[1-\nu_{1}+\frac{\sqrt{6}}{c}\right]}$
DISPLACEMENT AT REST		w(x, τ _σ)

TABLE E-7. SUMMARY, LONG SHELLS, HIGH LOADING, 7

	SHELL TYPE	PRESSURE LOADING TYPE
TYPE	LONG C ² > 6	HIGH p>1 + $\frac{6}{c^2}$ p $\neq \frac{3}{2}$
	ן נו נ	
CONDITIONS	$\theta_1 = \frac{2\sqrt{3}}{C} \begin{bmatrix} \text{coth} \\ 1 + \text{coth} \end{bmatrix}$	$\frac{2\sqrt{3}}{\frac{2\sqrt{3}}{Cu_{o}}} \frac{1}{\cot (A)}, A = \frac{C(1 - u_{o})}{\sqrt{3}}$ $\tau_{1} = p - \left\{ \frac{(p - 1)^{3}}{(2p - 3)} \left[2 - \frac{C^{2}}{6} \theta^{2} \right] \right\}^{\frac{1}{2}},$
,	$y \leqslant x \leqslant 1 \qquad y \leqslant 1 - \frac{\sqrt{6}}{C}$	$y = \begin{bmatrix} 1 - \frac{6}{C^2} & \frac{1}{\left(1 - y_1\right)^2} \end{bmatrix} \frac{\left(1 - y_1\right)}{\left(p - \tau_1\right)} \left(\tau - \tau_1\right) + y_1$ $\dot{y}(\tau) = \begin{bmatrix} 1 - \frac{6}{C^2} & \frac{1}{\left(1 - y_1\right)^2} \end{bmatrix} \frac{\left(1 - y_1\right)}{\left(p - \tau_1\right)}$
MOMENT AND MEMBRANE RESULTANT	$m_x = 1 + \frac{1}{(1-y)^3} \left[-4x^3 + 6(1 + \frac{1}{x^3})\right]$	y) $x^2 - 12 yx - 2 (1 - 3y)$] $n_{\varphi} = -1$
DISPLACEMENT		$\mathbb{C}^2 \left\{ A_1 \left(\tau - \tau_1 \right) - \frac{1}{2} B_1 \left(\tau^2 - \tau_1^2 \right) \right\} +$
DISPLACEMENT	$ \left 6 \left\{ \frac{1}{B_1} \log_e \left \frac{\left(C_1 - B_1 \tau \right)}{\left(C_1 - B_1 \tau_1 \right)} \right + \frac{(1 - x)}{B_1} \right\} \right $	$\frac{1}{\left(C_{1}-B_{1}\tau\right)}-\frac{1}{\left(C_{1}-B_{1}\tau_{1}\right)}$ (SEE NEXT PAGE FOR MORE INFORMATION.)
VELOCITY	$\dot{\mathbf{w}} = \frac{\left[1 - \frac{6}{C^2} \frac{1}{(1 - \mathbf{y})^2}\right] \left(\mathbf{p} - \tau_1\right)}{\left[1 - \frac{6}{C^2} \frac{1}{(1 - \mathbf{y}_1)^2}\right]^{\left(1 - \mathbf{y}_1\right)}}$	$\frac{1}{1} (x-y) = \frac{\left(p-\tau_{1}\right)}{\left(1-y_{1}\right)} \frac{\left[x-y-\frac{6}{C^{2}} \frac{(x-y)}{(1-y)^{2}}\right]}{\left[1-\frac{6}{C^{2}} \frac{1}{\left(1-y_{1}\right)^{2}}\right]}$
ACCELERATION	$\ddot{w} = -\left[1 + \frac{6}{C^2}\right]$	$\left\{ \frac{2(x-y)}{(1-y)^3} - \frac{1}{(1-y)^2} \right\} \right]$
TIME ⁷ o	$\tau_0 = \tau_1$	$+ \frac{\left(p-\tau_1\right)\left(1-y_1\right)}{\left[1-y_1+\frac{\sqrt{6}}{C}\right]}$
DISPLACEMENT AT REST	$w(y_0, \tau_0)$ when $y = y_0 = 1 - \frac{\sqrt{6}}{C}$	the velocity becomes zero. (SEE CONTINUATION PAGE.)

TABLE E-7. (Cont.)

$$A_{1} = x - y_{1} + \left[1 - \frac{6}{C^{2}(1 - y_{1})^{2}}\right] \frac{(1 - y_{1})}{(p - \tau_{1})} \quad \tau_{1}$$

$$B_{1} = \left[1 - \frac{6}{C^{2}} \frac{1}{(1 - y_{1})^{2}}\right] \frac{(1 - y_{1})}{(p - \tau_{1})}$$

$$C_{1} = 1 - y_{1} + \left[1 - \frac{6}{C^{2}} \frac{1}{(1 - y_{1})^{2}}\right] \frac{(1 - y_{1})}{(p - \tau_{1})}$$

$$D_{1} = \frac{(1 - y_{1})}{\left[C^{2}(1 - y_{1})^{2} - 6\right]}$$

DISTRIBUTION

<u> </u>	Copies	<u>0</u>	opies
Chief of Naval Research		Commander	
Attn: ONT-023	2	David Taylor Naval Ship Research	
Dr. A. J. Faulstich	2	and Development Center	
Mr. D. Houser	1	Attn: Code 17 (M. Krenzke)	1
Department of the Navy		Code 172	1
Arlington, VA 22217-5000		Code 175 (J. Sykes)	1
		Code 175.2	1
Commander		Code 175.1 (B. Whang)	1
Naval Sea Systems Command		Code 175.l (W. Gilbert)	1
Attn: SEA-05B	1	Code 175.2 (W. Conley)	1
SEA-55 (P. A. Gale)	1	Code 175.2 (P. Manny)	1
SEA-55B (G. Hagedorn)	1	Code 184.4 (M. Hurwitz)	1
SEA-55Yl (S. G. Arntson)	1	Code 1620.3 (R. Jones)	1
SEA-55Y13 (A. Kurzweil)	1	Code 1720.6 (A. E. Dadley)	1
SEA-55YB (R. A. Sielski)	1	Code 1720.4 (A. Wiggs)	i
SEA-55Y2 (R. E. Provencher)) 1	Code 1720.4 (J. R. Carlberg	1(;
SEA-63 (CAPT R. T. McGee)	1	Code 1730.5 (J. C. Adamchak	.)1
SEA-63R32	1	Code 175.2 (P. Dudt)	l
SEA-63B (C. J. Costanzo)	1	Bethesda, MD 20084	
SEA-09B331	1		
SEA-05R23 (C. Pohler)	1	David Taylor Naval Ship Research	
PMS-402	1	and Development Center	
PMS-406	1	Attn: Code 177 (R. Fuss)	1
PMS-407	1	Code 1770.1 (V. Bloodgood)	1
Department of the Navy		Code 1770.1 (M. Riley)	1
Washington, DC 20362-5101		Code 1770.2	
		(R. Higginbotham)	1
Office of Naval Research		Underwater Explosion Research	
Attn: Code 1132SM (Dr. A. Kushner	:)1	Division	
Code 1132P (D. Miller)	1	Portsmouth, VA 23709	
800 North Quincy Street			
Arlington, VA 22217		Naval Coastal Systems Center	
		Attn: Code 4210 (J. Rumbough)	1
		Panama City, FL 32407	
		Commander	
		Naval Weapons Center	
		Attn: Technical Library	ı
		San Diego, CA 92152	

DISTRIBUTION (Cont.)

<u>C</u>	opies		Copies
Commanding Officer Naval Underwater Systems Center Attn: D. J. Lepore Newport, RI 02840	1	Weidlinger Associates Weidlinger Consultants Attn: Dr. M. Baron Dr. M. Bowen Dr. A. Misovich	I 1 1
Naval Research Laboratory Attn: Code 6382, Material Science and Technology Division Dr. Mitchell Jolles Code 5131 (Martin Marcus) Library 4555 Overlook Avenue Washington, DC 20375-5000	1 1 1 1	New York, NY 10001 Hibbitt, Karlson & Sorensen, Inc. Attn: Dr. B. Karlson Dr. P. Sorensen 100 Medway Street Providence, RI 02906	1 1
Director Defense Nuclear Agency Attn: SPSS (C. McFarland)	1 1 1	American Bureau of Shipping Attn: Mr. Stanley G. Stiansen, Vice President Dr. Y. K. Chen Dr. D. Liu 45 Eisenhower Drive Paramus, NJ 07652	1 1 1
Attn: Prof. W. F. Chen School of Civil Engineering West Lafayette, IN 47907 Massachusetts Institute of	I	Stevens Institute of Technology, Castle Point Attn: Prof. David Nicholson Department of Mechanical Engineering Hoboken, NJ 07030	1
Technology Attn: Engineering Library Prof. T. Wierzbicki, Department of Ocean Engineering Prof. T. H. Pian	2 1 1	Library of Congress Attn: Gift and Exchange Division Washington, DC 20540	n 4
Prof. E. A. Witmer, Department of Aeronautics and Astronautics Prof. K. J. Bathe, Department of Mechanical	1	Westinghouse Electric Corporation Attn: Dr. Aspi K. Dhalla Advanced Energy Systems Division P. O. Box 158 Madison, PA 15663	1
Engineering Prof. J. J. Connor, Department of Civil Engineering	1	Lockheed Palo Alto Research Laboratory Attn: Dr. David Bushnell	1
Cambridge, MA 02139 Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145	12	Dr. John DeRuntz Dr. Charles Rankin Dr. G. Stanley Department 52-33, Building 205 3251 Hanover Street Palo Alto, CA 94304	1 1 1

DISTRIBUTION (Cont.)

	Copies	Copies
Conoco, Inc. Attn: Dr. J. G. DeOliveira Production Engineering Suite 2718 P. O. Box 2197 Houston, TX 77252	1	Society of Naval Architects and Marine Engineers Attn: Library 1 1 World Trade Center Suite 1369 New York, NY 10048
University of California Attn: Prof. A. E. D. Mansour Department of Naval Architecture Berkeley, CA 94720	1	Martin Marietta Baltimore Aerospace Attn: Library l Structural and Mechanical Analysis
Ballistic Research Laboratory Attn: Dr. K. Bannister Dr. J. A. Zukas Aberdeen Proving Ground, MD 2100 The George Washington University		(Arthur J. Rosenwach) 1 (W. W. Webbon) 1 103 Chesapeake Park Plaza Baltimore, MD 21220 American Society of Civil Engineers Attn: Engineering Library 1 345 East 47th Street
Attn: Prof. T. Toridis Department of Civil Engineering Washington, DC 20052 The George Washington University	1	New York, NY 10017-2398 California Institute of Technology Attn: Aeronautics Library l
Center at NASA Attn: Prof. A. K. Noor Langley Research Center Hampton, VA 23665	1	Jet Propulsion Laboratory Library I Pasadena, CA 91109
Stanford University Attn: Prof. T. J. R. Hughes Division of Applied Mechanics Stanford, CA 94305	1	University of California Attn: Library 1 Civil Engineering Library 1 Berkeley, CA 94720
Northwestern University Attn: Prof. T. Belytschko Department of Civil and Mechanical/Nuclear Engineering Evanston, IL 60201	1	University of California Attn: Library 1 Los Angeles, CA 90024 Harvard University
John J. McMullen Associates, Inc. Attn: Mr. Donald Wilson 3241 Jefferson Davis Highway Suite 715 Arlington, VA 22202	1	Attn: Library 1 Cambridge, MA 02138 National Bureau of Standards Attn: Library 1 Washington, DC 20390
		Columbia University Attn: Civil Engineering Library 1 Library 1 New York, NY 10017

DISTRIBUTION (Cont.)

Copies

Center for Naval Analyses 4401 Fort Avenue	
P. O. Box 16268	
	1
Alexandria, VA 22302-0268	T
NSACSS	
Attn: G74 (TA)	1
Ft. George G. Meade, MD 20755-6000	ı
Internal Distribution:	
El6 (J. Renzi)	1
	2
	5
	l
	2
	l
	2
	1
RIOA (W. K. Reed)	2
	2
R14 (M. Moussouros)	5
(K. Kiddy)	1
(G. Harris)	1
(S. Wilkerson)	l
(F. Bandak)	ì
(D. Bendt)	l
(J. Shaker)	l
(J. Koenig)	l
(T. Farley)	2
(R. M. Barash)	l
(N. Holland)	1
(W. McDonald)	1
R32 (J. Matra)	l
UO1	1
Ul2 (W. Hinckley)	1
(D. Crute)	1
'J31 (C. F. McClure)	1
(S. VanDenk)	l
·	1